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We herein propose a new theoretical approach for analyzing the nonlinear propagation of directive sound
beams emitted from a planar piston source with a circular aperture. The proposed approach relies on the
split-step Padé approximation, which is an efficient method for obtaining wide-angle one-way wave
equations, especially in underwater acoustics. Despite including only two Padé terms in the expansion,
the theory was applicable to a beam angle of up to ±40� relative to the main propagation direction,
the angle of which is approximately twice that of the Khokhlov–Zabolotskaya–Kuznetsov equation,
which is based on parabolic approximation. In order to demonstrate the effectiveness of the newly pro-
posed theoretical approach, we performed an experiment using an airborne ultrasonic emitter with a cir-
cular aperture of 7.5 cm in radius. We drove the emitter powerfully at a 36-kHz and 40-kHz bi-frequency
signal and measured the beam patterns of the primary and secondary waves, such as parametric sounds
within wide propagation angles. Excellent agreement between measured data and the corresponding
numerical simulations supports the validity of the proposed model equations and the computational
methods for their numerical solutions.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

The Khokhlov–Zabolotskaya–Kuznetsov (KZK) equation is
widely used for theoretical prediction of the nonlinear field of a
directive sound beam, especially when quantitative evaluations
in harmonic and/or parametric sound generations are needed
[1,2]. This model equation is derived from a full nonlinear wave
equation known as the Westervelt equation under the conditions
of one-way propagation and parabolic approximation. Unfortu-
nately, the latter condition imposes two spatial limitations on its
applicability. One limitation is that the field must be relatively
far from a sound source, and the other limitation is that the parax-
ial region is a cone of up to approximately 20� with respect to the
beam axis [2,3]. Hence, the KZK equation becomes inaccurate for
theoretically describing the propagation of sound beams that are
wider than 20�.

Several prospective approaches and techniques that do not re-
quire parabolic approximation have hitherto been proposed in
order to overcome such applicability limitations. For example,
Christopher and Parker used the convolution theorem and the dis-
crete Hankel transform of a point spread function to describe a full
diffractive wave with arbitrary absorption [4]. Tavakkoli et al.
introduced the Rayleigh integral formula for solving the diffraction
equation in the time domain [5], whereas Zemp et al. simulated
All rights reserved.

: +81 42 443 5210.
ra).
diffraction fields using the angular spectrum method from the
viewpoint of computational efficiency [6]. Huijssen et al. obtained
the axial and lateral beam profiles of harmonic components by
applying the FDTD scheme to the Westervelt model equation [7].
Furthermore, Huijssen and Verweij proposed a promising method
that is based on the Neumann iterative solution of the Westervelt
equation, where the nonlinear term is treated as a nonlinear con-
trast source [8]. Interestingly, their method is free of any assumed
wavefield directionality. Recently, Jing et al. investigated the valid-
ity of the Westervelt equation through comparison with the more
precise nonlinear wave equation that is reduced to the Westervelt
equation when the second-order Lagrangian density vanishes [9].
They used the angular spectrum method and found that the West-
ervelt is quite accurate in theoretically describing nonlinear waves
from a spherically curved focused transducers having an aperture
angle of 80�. The methods and formulations mentioned above are
well developed for predicting nonlinear fields from unfocused or
focused intense sources with circular or rectangular apertures. In
addition, source excitations in the cw and pulsed modes are con-
sidered. A recently published monograph contains details on vari-
ous current approaches and simulation models [10,11].

In order to adequately formulate the effect of diffraction and
provide greater insight into the wide-angle propagation of sound
beams, we use an alternative approach, namely, the split-step
Padé approximation, which was first proposed by Collins for under-
water acoustics [12]. To this end, the present report begins with a
brief description of the split-step Padé approximation. Numerical
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demonstrations of sound beam profiles in linear fields are then pre-
sented. In addition, the theory and numerical scheme are extended
to beam profiles in the nonlinear regime, where the Westervelt
equation is used as an appropriate model of wave equations with
quadratic nonlinearity. All simulations presented herein are limited
to beams from ultrasound sources with circular apertures.

As far as we know, there has been no report that describes
wide-angle propagation approaches for predicting parametric
sound fields formed by intense bi-frequency waves. In order to
demonstrate the effectiveness of the proposed approach for para-
metric sounds, we perform an experiment in air using a powerful
ultrasound source with a circular aperture driven by a bi-frequency
signal of 36 kHz and 40 kHz and compare the results carefully with
the corresponding simulated results.

2. Theoretical background

2.1. Model equation

Let us assume that ultrasound beams radiated from a powerful
piston source are propagating in a homogeneous and viscous fluid.
The propagation of such intense beams is theoretically described
by the following Westervelt equation with quadratic nonlinearity
[1]:
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where p is the sound pressure, c0 is the speed of sound at infinites-
imal amplitude, b is the diffusivity related to sound absorption, q0 is
the medium density, and b is the coefficient of nonlinearity. Substi-
tuting the retarded time t0 = t � z/c0 into Eq. (1), the second term of
the left-hand side in Eq. (1) disappears, and the following equation
is obtained:
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where r2
? ¼ @

2=@x2 þ @2=@y2 is the two-dimensional Laplacian in
the x–y plane perpendicular to the z-axis of beam propagation.
For circularly symmetric sound fields, r2
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Þ. By introducing the dimensionless variables of

�p ¼ p=p0, s = xt0, n = r/a, r = z/Rd, and �r2
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Eq. (2) can be rewritten in dimensionless form as follows:
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where a is the radius of the circular aperture, p0 is the pressure
amplitude on the source face, x is the angular frequency of ultra-
sound, Rd is the Rayleigh distance defined by ka2/2, and k is the
wavenumber x/c0. In ordinary ultrasound waves, e = 1/(ka)2 be-
comes much smaller than unity because ka� 1. In Eq. (3),
a ¼ bx2=2q0c3

0 is the absorption coefficient. This formula presup-
poses that sound absorption obeys the frequency-squared law.
Otherwise, appropriate modification is required for the formula,
for example, in air and biological media. Moreover, N = Rd/xs is a
dimensionless nonlinearity coefficient, in which xs ¼ q0c3

0=bxp0 is
the shock formation distance for a lossless plane wave.

Eq. (3) includes the combined effects in the fundamental charac-
teristics of sound beams. The first term on the right-hand side ac-
counts for diffraction, and the third term represents sound
absorption. The last term on the right-hand side is related to the non-
linearity of the medium. In the absence of diffraction, absorption, and
nonlinearity, the remaining two terms are collected to obtain
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This equation has the solution �p ¼ FþðsÞ þ F�ðsþ r=eÞ = Fþðxt0Þþ
F�ðxt0 þ 2kzÞ ¼ Fþðxt � kzÞ þ F�ðxt þ kzÞ, where F+ and F� are
arbitrary functions. Consequently, Eq. (4) represents plane waves
traveling individually in the positive and negative directions.

As a rule, it is difficult to solve Eq. (3) analytically and/or com-
putationally while taking into account all of the terms, even for the
case in which the nonlinearity is weak enough to use a quasi-linear
approach. Instead, we herein use the operator splitting scheme
that is often used to numerically solve nonlinear wave equations.

2.2. Operator splitting

Over sufficiently small traveling steps of a sound wave, the ef-
fects of diffraction, absorption, and nonlinearity may be assumed
to be independent of each other. We can then divide Eq. (3) into
the following three equations:
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Eqs. (5)–(7) are solved independently by using the output data of
one equation as the input data of the next equation over each small
step in r.

2.2.1. Eq. (5): Diffraction stage
Let the sound pressure be �p ¼ qejs � q�e�js� �

=2j by assuming
that the beam is in a steady state motion, where the superscript ⁄
signifies the complex conjugate of the pressure q. Substitution
of �p into Eq. (5) yields
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Factoring Eq. (8) and keeping the terms representing outgoing
waves in the positive z direction, we obtain
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The wave operator �r2
? is equivalent to � (kr/k)2 in the k-space,

where kr is the wavenumber in the radial direction. For a sound
beam to be collimated and its frequency to be high, both kr/k and
e = 1/(ka)2 are smaller than unity. Hence, e �r2

? in Eq. (9) is so small
that we can approximate the square-root term with the help of a
Taylor power series:
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When the first two terms in the right-hand side of Eq. (10) are re-
tained, Eq. (9) is reduced to
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The model equation obtained in this manner is a standard par-
abolic equation (PE) that serves as a basis for the derivation of the
KZK equation. The PE is actually simple in form and is readily solv-
able analytically. However, due to such a rough approximation, the
region of validity is restricted to a propagation angle of no more
than ±20� with respect to the z axis and to a field of several wave-
lengths away from the sound source [1–3]. As expected, the
approximation accuracy is improved for propagation angles of
greater than 20� by including higher-order terms in Eq. (10).
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However, the higher-order PE methods based on a Taylor series are
intrinsically inefficient because several terms are essentially
required in order to validate wide-angle propagation [13].

Alternatively, we apply the split-step Padé approximation to
Eq. (9). Here, we first obtain the solution of Eq. (9) at r + Dr. We
then apply the Padé approximation [12]:
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where Dr is a small grid in the r coordinate. In Eq. (12), the differ-
ential operator �r2

? is replaced with X for simplicity. In order to re-
duce the number of differential operators X, we may transform the
equation as follows:
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where ai and bi(i = 1, . . . ,N) are the Padé coefficients and are numer-
ically determined by equating the first 2N derivatives of both the
equations of the center and right-hand side in Eq. (12).

The solution of Eq. (13) is obtained in accordance with the fol-
lowing two steps:

� Step 1: We obtain the pressures qi along the radial direction n at
r + Dr by solving reduced equations:
ð1þ biXÞqiðn;rþ DrÞ ¼ qðn;rÞ ð14Þ
subject to the known pressure data q at r for i = 1 to N. More spe-
cifically, the right-hand side of Eq. (14) contains the known val-
ues of q along the radial direction with the step of Dn, whereas
the left-hand side contains the unknown values of qi at the next
step r + Dr along the radial steps. This is a typical implicit meth-
od to solve Eq. (14) in a finite difference scheme.
� Step 2: Using the solutions qi, Eq. (13) is represented as
qðn;rþ DrÞ ¼ 1þ
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Thus, if the pressure at r is known in advance, we obtain the
unknown pressure q at r + Dr in a step-by-step manner. Here, q
at the first step is the pressure amplitude at r = 0 and is initially
specified by appropriate boundary conditions on the source face.

2.2.2. Eq. (6): Absorption stage
Using the complex pressure q, we rewrite Eq. (6) as follows:

dq
dr
¼ �aRdq: ð15Þ

This equation is readily integrated with respect to r, which is ex-
pressed as

qðrþ DrÞ ¼ e�aRdDrqðrÞ: ð16Þ

As mentioned above, the Westervelt equation assumes that the
sound absorption obeys the frequency-squared law. In air and bio-
logical media especially, an appropriate modification of a is needed
depending on the absorption mechanism.
2.2.3. Eq. (7): Nonlinearity stage
Due to the presence of the nonlinear term �p2 in Eq. (7), pressure

waveforms are distorted during propagation, and several harmon-
ics and/or combination frequency components are inherently gen-
erated. Here, we set the nth harmonic pressure component as �pn

and the corresponding complex pressure as qn. Then, it follows that
�pn ¼
1
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Substitution of Eq. (17) into Eq. (7) yields the equation of the n-th
harmonic:
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where M is the number of harmonics retained in computation. This
number is usually determined by the value of N. The larger the
value of N, the greater the number of harmonics that must be
retained. Naturally, sound absorption, numerical accuracy, and
computer power are additional factors for the determination of M.

The most efficient and straightforward method for solving
Eq. (18) is to use the explicit Euler method. Over small steps of
Dr, the pressure component qn at r + Dr is approximately
provided by various harmonic components at r:
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3. Numerical examples

3.1. Linear field

In order to demonstrate the effectiveness of the Padé approxi-
mation, we present a few typical numerical examples for sound
beam behavior in a lossless linear field. Suppose that an ultrasound
piston source with a circular aperture of radius a = 5 cm radiates a
40-kHz sinusoidal wave in air (c0 = 340 m/s). In addition, the distri-
bution of pressure amplitude over the source face is assumed to be
uniform:

�pðn;rÞjr¼0 ¼
1 ð0 6 n 6 1Þ
0 ðn > 1Þ:

	
ð20Þ

The pressure q at r + Dr can be obtained numerically from the
data at r through the process of Steps 1 and 2. An even grid-
spacing system is introduced in the integration region:
0 6 n 6 nmax and 0 6 r <1. Concretely, the values of grid sizes in
both directions are assigned to be Dn = 0.025 and Dr = 2 � 10�4

based on empirical data [14]. There are 1200 grid-points in the n
coordinate, so that nmax = 30. This corresponds to 0 6 r 6 1.5 m in
the actual radial dimension. Furthermore, for simplicity, only
two terms remain in the Padé approximation (N = 2).

Fig. 1 shows the beam patterns at z = 2 m, where the abscissa
indicates the radial distance r from the z-axis, and the ordinate
indicates the relative pressure amplitude �p ¼ p=p0. The solid line
in the figure denotes the pattern using the split-step Padé approx-
imation method proposed herein. The dotted line denotes the
pattern based on the PE of Eq. (11), which is solved analytically:
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e�jn
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r
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2n
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where J0(�) is the zero-th order Bessel function. For comparison, the
pattern obtained using the Rayleigh integral solution is indicated by
the dashed line. Based on the source conditions, the Rayleigh dis-
tance Rd is 92 cm. The receiving point at z = 2 m is then approxi-
mately twice as far from the source, as compared to the Rayleigh
distance, and is located almost in the far field. The resultant separa-
tion in the main-lobe and side-lobes is clearly observed.

Incidentally, the Rayleigh integral solution associated with the
boundary condition of uniform particle-velocity u0 on the source
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Fig. 1. Beam patterns of a 40-kHz airborne ultrasound wave at z = 2 m from a piston
source having an aperture of 5 cm in radius (ka = 37). Split-step two-term Padé
approximation (solid line), standard PE solution (dotted line), and analytically exact
solution obtained using the Rayleigh integral (dashed line). h1 and h2 indicate
propagation angles of 20� and 40�, respectively.
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Fig. 2. On-axis pressure curves (a) and beam patterns (b) at z = 2 m for the first two
or three harmonics. An ultrasound source with a circular aperture of 7.5 cm radiates
a 40-kHz sinusoidal wave. The source pressure level is 125 dB.
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face provides the exact solution for a piston source in an infinite
rigid baffle:

q ¼ j
xq0
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dS; ð22Þ

where R is the distance between the coordinates of a point source on
the aperture S0 and those of the receiver, and dS is the area element
used for integration. If the relation of plane wave impedance
u0 = p0/q0c0 holds on the aperture, Eq. (22) is reduced to the follow-
ing equation with uniform pressure distribution over the source
face:
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The dashed beam pattern in Fig. 1 is obtained using Eq. (23).
Likewise, the split-step Padé and PE approximations both specify
uniform pressure over the source face. It is therefore appropriate
to compare the field characteristics of the three curves because
their boundary conditions are the same at least over the aperture.
Obviously, the Padé solution agrees well with the Rayleigh integral
within a radial distance of r = ±1.4 m, which corresponds to an an-
gle range of approximately ±40� and is twice as wide as the prop-
agation angle of the PE solution.

Importantly, the side-lobes predicted by the PE solution, espe-
cially those far from the z-axis, tend to more closely approach
the z-axis, i.e., the spreading of the beam is slightly suppressed.
A similar tendency is observed elsewhere. (For example, see

Fig. 5 in Ref. [6]) In fact, the operator
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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q
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the wavenumber in the axial direction and is associated with kr
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�ð1=8Þ kr=kð Þ4 in the k-space. Hence, plane wave modes in the PE
approach are actually overestimated, so that beam spreading
should be suppressed as a whole.

3.2. Extension to nonlinear field analysis

Next, we turn to the solution of the Westervelt equation based
on the operator splitting method. Let the complex pressure of the
nth harmonic be qn. The pressure must then satisfy the wave
equation given by Eq. (5):
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This equation is the same as Eq. (8) if the coefficient n/e is re-
placed with 1/e. We can then obtain the solution of Eq. (24) by sim-
ply modifying Eq. (12) under such a simple transformation. In
addition, for higher harmonics, it is expected that the second term
of Eq. (24) will become larger than the first term. In other words,
the effects of the second derivative with respect to r on sound
pressure magnitudes become weaker for higher harmonics.

The form for sound absorption is basically the same as that of
Eq. (16):

qnðrþ DrÞ ¼ e�anRdDrqnðrÞ; ð25Þ

where an is the absorption coefficient at frequency nx. The explicit
solution of the nonlinear equation given by Eq. (7) is already given
by Eq. (19).

Over sufficiently small steps, the effects of diffraction, absorption,
and nonlinearity may be assumed to be independent of each other.
Therefore, we use the concept of a first-order operator-splitting
scheme. The three calculation steps represented by Eqs. (5)–(7) are
implemented sequentially every Dr up to the position of a receiver.

Let us compare the simulation results obtained using the split-
step Padé-based model equation and those obtained using the KZK
equation. The KZK equation is derived by removing the second
term of the right-hand side on Eq. (3), i.e.,
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Fig. 2 shows the propagation curves along the beam axis and the
beam patterns at z = 2 m of the first three harmonics for a 40-kHz
initial wave with a pressure amplitude of 125 dB (p0 = 50 Pa). The
radius of the present piston source is 7.5 cm. Then, ka = 55. Since
Rd = 2.08 m and xs = 3.13 m, the dimensionless nonlinearity
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coefficient becomes N = 0.66. This magnitude implies that the
nonlinearity is moderate, so that the first 10 harmonics are
retained in the calculation (M = 10). Since atmospheric tempera-
ture and relative humidity affect sound absorption in air, we set
the atmospheric temperature to be 20 �C and the relative humidity
to be 50%. The grid sizes for the Padé method and the KZK equation
are the same and are slightly different from the numerical param-
eters in Fig. 1: Dn = 0.02, Dr = 2 � 10�4, and nmax = 24.

The solid lines in the figure denote the pressure curves obtained
by the proposed method involving the Padé method, and the dot-
dashed lines denote the pressure curves obtained using the KZK
model equation. As shown in Fig. 2a, there are somewhat notice-
able differences between the two approaches in the near field less
than 20 cm from the source. However, the differences become
smaller for higher harmonics [13].

Relatively striking differences appear in both the beam patterns
of the 40-kHz fundamental components in Fig. 2b as the receiver
moves away from the beam axis. More precisely, the pressure
amplitudes predicted by the KZK equation are underestimated in
the region in which r is greater than 50 cm (h ’ 15�). Again, note
that the third or more outer side-lobes tend to approach the z-axis,
possibly due to the reason described by Fig. 1.

Fig. 3 shows a quantitative comparison between the experiment
and theory when a bi-frequency ultrasound wave is radiated from
a powerful source. Since the primary frequencies are 36 kHz and
40 kHz, the difference frequency or parametric frequency is
4 kHz. An experiment was performed using an ultrasonic emitter
that consists of 207 small piezoelectric ceramic transducers of
1 cm in diameter. The aperture of the emitter is approximately cir-
cular, having a radius of a = 7.8 cm. Keeping z = 2 m, a quarter-inch
condenser microphone was manually moved in the radial direction
by approximately 5-cm steps in order to pick up various frequency
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Fig. 3. Beam patterns of the primary waves (a) and the secondary waves at z = 2 m.
An ultrasonic emitter with a circular aperture of 7.8 cm in radius radiates 36-kHz
and 40-kHz primary sound beams. The source pressure levels p0 for both the two
primary waves are expected to be 124 dB and 128 dB. All of the circles in the figures
denote experimental data. h1 and h2 indicate propagation angles of 20� and 40�,
respectively.
components. The on-source pressure amplitudes of the two pri-
mary waves were determined by the best fit of curves with mea-
sured propagation data along the beam axis for the fundamental
pressure by assuming that the pressure distribution over the
source face is uniform. The resultant amplitudes were estimated
to be 44.8 Pa (SPL = 124 dB) and 71 Pa (SPL = 128 dB) for the 36-
kHz and 40-kHz waves, respectively. The room temperature
(21 �C) and relative humidity (64%) were almost unchanged during
the experiment. Moreover, the noise floor in the experimental set-
up has a sound pressure level of approximately 25 dB.

The measured beam patterns of the primary waves are practi-
cally in good agreement with the present split-step Padé scheme
within the measured range of r ’ 30 cm, especially within the
main-lobe and at least the first two side-lobes. However, somewhat
poor agreement is observed in the third or more outer side-lobes,
probably due to the non-uniformity in the source pressure (see
Appendix A). Such discrepancies appear not to generate serious er-
rors in predicting parametric sounds, because parametric sounds
are created by the spatial distribution of the virtual sources that
originate from the mutual interaction of the primary waves. More-
over, the primary sound pressures in the side lobes, which are 20 dB
lower than those in their main lobes, for example, contribute to
only 1% of the creation of parametric sounds. In fact, Fig. 3b reveals
that the 4-kHz parametric sound beam agrees excellently with the
theoretical predictions up to the radial range of r = ±1.5 m, which
corresponds to a beam propagation angle, h, of approximately
±40 �. For comparison, the beam pattern curves predicted by the
KZK equation are indicated by dot-dashed lines. Needless to say,
the applicability of the KZK equation is limited to narrow beams
that are roughly half the angle predicted by the Padé approach. Sim-
ilarly, the measured 8-kHz beam pattern agrees well with numeri-
cal simulations. Unfortunately, the beam is so narrow that we
cannot determine which of the curves of the two theories is in bet-
ter agreement with the measured data. More precise measure-
ments are needed in order to make this determination.

Incidentally, the runtime in computation is significantly depen-
dent on various factors, such as the CPU, the programming code,
and the grid sizes. In order to complete the simulations in Fig. 3,
it took 203500 for the Padé approach and 601000 for the KZK equation
when implementing on a PC with Intel(R) Core2 Quad CPU (Q9550)
and using the Intel Visual Fortran compiler. It is anticipated that
considerable runtime savings would be achievable using the
second-order operator-splitting for field simulation [6].
4. Conclusions

In order to solve the Westervelt nonlinear model equation for
the problem of wide-angle beam propagation, we have introduced
the split-step Padé approximation, which is an efficient numerical
simulation of various theoretical approaches. Despite the use of
only the two Padé terms, the applicability limit of the propagation
angle has been extended to approximately ±40� and to an angle
twice as wide as that of the KZK equation. We have carried out
an experiment using a bi-frequency airborne ultrasound in order
to demonstrate the effectiveness of the application of the split-step
Padé approach to nonlinear field analysis. It has been confirmed
that the present model and numerical techniques are in extremely
close agreement with the measured data for parametric sounds,
even when the approach of the KZK equation fails.
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Appendix A. Random allocation of transducers

Generally, the electro-acoustic conversion efficiency of a piezo-
electric ceramic transducer varies from unit to unit. As an example,
Fig. A1 shows the amplitudes and phases of sound pressures ob-
tained from 456 transducers that are structurally similar to the
transducers we used for the present experiment [15]. We really no-
tice that the variance of the conversion efficiency is relatively
large: the standard deviation of the pressure amplitude is
r0 = 4.54 Pa and attains 16% of the average value p0 = 27.6 Pa.

Let us assume that sound waves radiated from the transducer
are propagating in free space. In this case, the complex sound
pressure p0 is generally given by the Rayleigh integral formula of
Eq. (23):

p0 ¼ p0qejkz ¼ j
kp0

2p

Z Z
S0

e�jkR

R
dS; ðA1Þ

where S0 is the aperture area. The face of the ultrasonic emitter that
is composed of many transducers is not planar but uneven owing to
the circular horns of the transducers. Since it is difficult to strictly
simulate the field by taking account of such involved boundary con-
ditions, we approximate the above Rayleigh integral as:

p0 ’ j
k

2p
XN

n¼1

p0ðnÞ
e�jkRn

Rn
DS ¼ j

kS0

2pN

XN

n¼1

p0ðnÞ
e�jkRn

Rn
; ðA2Þ
Fig. A1. Variations of the received pressure amplitudes and phases obtained from
456 small piezoelectric ceramic transducers [15]. The input voltage applied to each
transducer is 6Vp� p and the driving frequency is 30 kHz. The separation distance
between the transducer and a quarter-inch condenser microphone is 1 cm.
by assuming that all the transducers are omnidirectional and each
transducer has the individual sensitivity. Besides, we ignore the
mutual impedance of the transducer array that may affect the for-
mation of sound fields for simplicity. In Eq. (A2), N is the number
of transducers, Rn is the distance between the coordinates of a
cone’s center and those of the receiver, and the transducer area is
approximately given by DS = S0/N.

Hypothetically, consider the situation where the present ultra-
sonic emitter is one of many possible sample emitters that are
composed through random allocation of ultrasonic transducers
with statistical characteristics shown in Fig. A1. We do not herein
take account of the phase variation of the individual transducer for
simplicity. From Eq. (A2), the ensemble average of the received
pressure p0 is given by

hp0i ¼ j
kS0

2pN

XN

n¼1

hp0ðnÞi
e�jkRn

Rn
; ðA3Þ

where the symbol h i indicates ensemble averaging and p0(n) is a
random variable that determines the pressure amplitude on the
source. Since hp0(n)i is equal to the mean value p0, Eq. (A3) becomes

hp0i ¼ j
kS0p0

2pN

XN

n¼1

e�jkRn

Rn
: ðA4Þ

Basically, this equation is the same as Eq. (A2) when the pressure
amplitude is distributed uniformly over the source.

Next, we consider the variance of the pressure that is defined as
the mean square value of p0 about its mean value h p0i.

hðp0 � hp0iÞðp0 � hp0iÞ�i ¼ kS0

2pN

� �2XN

n¼1

XN

m¼1

hðp0ðnÞ � p0Þðp0ðmÞ � p0Þi

� e�jkðRn�RmÞ

RnRm
: ðA5Þ

The random variables p0(n) and p0(m) are assumed to be uncorre-
lated, then

hðp0ðnÞ � p0Þðp0ðmÞ � p0Þi ¼ r02dðn�mÞ; ðA6Þ

where r
02 is the variance defined as r

02 = h(p0(n) � p0)2i and d(n) is
the unit impulse function. From Eqs. (A-5) and (A-6), the variance
of the pressure amplitude yields

hðp0 � hp0iÞðp0 � hp0iÞ� > ¼ kS0

2pN

� �2XN

n¼1

XN

m¼1

r02dðn�mÞ e
�jkðRn�RmÞ

RnRm

¼ kS0

2pN

� �2

r02
XN

n¼1

1
R2

n

: ðA7Þ

Interestingly, the pressure variance is independent of the emit-
ter directivity. When the receiver is located on the z-axis in the far-
field, the mean pressure amplitude expressed by Eq. (A4) gives
approximately

pm ¼ jp0jz!1 ’
kS0p0

2pN
N

1
z
¼ kS0p0

2pz
; ðA8Þ

because of Rn � z. Similarly, the standard deviation of the pressure
is the square root of Eq. (A7), being given by

ps ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðp0 � hp0iÞðp0 � hp0iÞ� >

q
z!1
’ kS0r0

2pz
ffiffiffiffi
N
p : ðA9Þ

The coefficient of variance that is defined as ps/pm is r0=
ffiffiffiffi
N
p

p0. It
is therefore expected that the pressure amplitude radiated from an
ultrasonic emitter with a randomly distributed pressure amplitude
with the mean value p0 and standard deviation r0 has a possibility
of randomness in amplitude with the deviation about the pressure
mean, but its magnitude is inversely proportional to

ffiffiffiffi
N
p

.
Especially, the effect of randomness in transducer’s sensibility on
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received pressure amplitudes should be mainly observed in the
sidelobes and dips of the beam pattern because the variance is
independent of the emitter directivity.
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