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Abstract
The density and structure of bone is highly heterogeneous, causing wide
variations in the reported speed of sound for ultrasound propagation. Current
research on the propagation of high intensity focused ultrasound through an
intact human skull for non-invasive therapeutic action on brain tissue requires
a detailed model for the acoustic velocity in cranial bone. Such models have
been difficult to derive empirically due to the aforementioned heterogeneity of
bone itself.

We propose a single unified model for the speed of sound in cranial
bone based upon the apparent density of bone by CT scan. This model
is based upon the coupling of empirical measurement, theoretical acoustic
simulation and genetic algorithm optimization. The phase distortion caused
by the presence of skull in an acoustic path is empirically measured. The
ability of a theoretical acoustic simulation coupled with a particular speed-of-
sound model to predict this phase distortion is compared against the empirical
data, thus providing the fitness function needed to perform genetic algorithm
optimization. By performing genetic algorithm optimization over an initial
population of candidate speed-of-sound models, an ultimate single unified
model for the speed of sound in both the cortical and trabecular regions of
cranial bone is produced.

The final model produced by genetic algorithm optimization has a
nonlinear dependency of speed of sound upon local bone density. This model is
shown by statistical significance to be a suitable model of the speed of sound in
bone. Furthermore, using a skull that was not part of the optimization process,
this model is also tested against a published homogeneous speed-of-sound
model and shown to return an improved prediction of transcranial ultrasound
propagation.

(Some figures in this article are in colour only in the electronic version)
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1. Introduction

Focused ultrasound provides a non-invasive method for inducing temperature elevations in
tumours (Fry and Johnson 1978, Lele and Pierce 1973, Lizzi et al 1984, Chapelon et al 1993,
Sanghvi et al 1996, ter Haar et al 1989), resulting in the coagulation of the tumour. It has long
been recognized that the ability to produce a high intensity ultrasound focus within the brain,
and hence non-invasive cautery at that focus due to acoustic absorption by brain tissue, would
provide a minimally invasive means of treating deep-seated brain tumours without disturbing
overlying structures (Fry et al 1954, Lele 1967). It is clearly desirable to produce this focus
through an intact skull rather than requiring craniotomy to establish an acoustic window,
which has led to interest in the study of the propagation of ultrasound through the bones of the
skull (Sun and Hynynen 1998, Hynynen and Jolesz 1998, Tanter et al 1998). Although bone
in general was first considered to be an impassible barrier to therapeutic ultrasound, and was
then considered to induce too much distortion into the acoustic field to allow a therapeutic
focus to be formed (Lynn et al 1942, Lynn and Putnam 1944), simulation and experimental
studies have since shown that a therapeutic focus may be formed inside an intact skull if
suitable phase compensations are applied over the ensonicating field by means of a segmented
transducer (Hynynen and Jolesz 1998, Sun and Hynynen 1999).

An entirely non-invasive therapeutic ultrasound system using transcranial focusing clearly
requires that the appropriate phase corrections be determined non-invasively (Hynynen
1999). Acoustic simulation can be utilized to determine the distortion an intact skull
would introduce into an incident uniform ultrasound field, and hence to determine the
appropriate phase compensations to reverse this distortion (Clement and Hynynen 2002a).
Potentially, many different acoustic simulation techniques may be applied to this problem,
including acoustic time reversal, inversion of linear filters, inversion of Helmholtz operators,
Rayleigh–Sommerfield analysis, and formulations such as KZK and linear or nonlinear finite-
difference time-domain (FDTD) (Tanter et al 2001, Greenleaf 1986, Averkiou and Cleveland
1999, Hallaj and Cleveland 1999). These simulations are based on the reconstruction of CT
data to provide the geometry and composition of each individual skull (Clement and Hynynen
2002a). CT data in Hounsfield units (HUs) may be readily normalized to apparent density by
ensuring that materials of known density are included in the scan.

The field correction calculations under all these simulation methods are dependent on
the velocity with which the ultrasound is propagated through the skull. However, skull is a
heterogeneous material, so it does not have a single speed of sound throughout. Furthermore,
its heterogeneity makes it difficult to determine empirically what the variation in speed of
sound throughout a sample of skull might be. This difficulty is reflected in the literature
on the material properties of the skull: estimates of the speed of sound in skull are given
as speed of sound through some bulk sample of skull bone, referred to as the plesiovelocity
(Lees et al 1979). Especially, the consensus across the literature is not convincing. A common
approach to attempt to improve on these circumstances is to divide the skull into a three-layer
model (Fry and Barger 1978), comprising an inner and outer table of cortical bone between
which trabecular bone is sandwiched. This distinction into layers is somewhat arbitrary
since much skull bone is of an intermediate porosity and hence is not robustly assignable to
either category. Sharp divisions between the three layers are similarly seen to be lacking in
anatomical specimens.

Hence, we find ourselves in the situation of requiring a functional model of local speed
of sound in bone based on the apparent bone density at a particular point, but seemingly
confounded from producing such a model empirically due to the high variability of the material
under study. We propose that this problem may be made tractable by using an empirical
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Figure 1. A human calvarium mounted in a stereotactic positioning frame.

acoustic approach combined with the genetic algorithm optimization (Holland 1975) of a
population of candidate functions relating apparent bone density to local speed of sound.

2. Method

2.1. Overview

The acoustic properties of a material in bulk may be measured by examining the transmission
of ultrasound through a sample of that material, and this technique may be used to examine
the bulk properties of a heterogeneous material such as bone (Lakes et al 1985). In this study,
we concentrate on the phase difference between the received wave and the transmitted wave
in continuous wave sonication. In particular, we examine the change in this phase difference
between the case where only degassed water is present between the transducer and receiver,
and the case where a human calvarium is placed between the transducer and the receiver.

The human calvaria used empirically above are first CT scanned at high clinical resolution.
Once the overall geometric structure and the density distribution of the calvaria have been
acquired, the experiment described above can be reproduced as a computational simulation
of acoustic propagation. The change in phase difference measurement described above is
calculated for the simulation. This measurement is acutely sensitive to the speed of sound in
the bone. The problem then becomes one of optimizing the model used for speed of sound in
bone in the simulation.

This optimization problem is ideally suited to treatment with a genetic algorithm since
there is a well-defined, quantifiable success function, which is the total deviation of the
simulated phases from the empirical phases. Furthermore, the genetic algorithm optimization
technique does not depend on gradient information that may be unacceptably noisy since it
would only be available by numerical approximation in this case. This optimization method
is also relatively insensitive to local minima and maxima. The genetic algorithm optimization
technique can be easily tailored to known physical constraints such that only physically realistic
models are permitted (Poloni and Pediroda 1998).

2.2. Empirical configuration

The calvaria were maintained in wet condition so that their acoustic properties remain
comparable to in vivo bone. The CT scan was performed using a Siemens Somatom Plus
4 with deconvolution kernel AH-82. The calvaria were placed within stereotactic frames as
shown in figure 1 to allow their accurate positioning during both the experimental procedure
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and CT scanning. Fiducial markers on the frame allow the position and orientation of the
skull during the experimental procedure to be accurately matched to a solid body geometric
transformation of the reconstructed data.

Ultrasound sonication was performed in degassed, deionized, room-temperature water at
0.74 MHz, which is within the acoustic window for skull bone (Fry 1979) while being of
an appropriate frequency for the accurate measurement of the phase component. While an
increase in temperature in cranial bone may produce changes in the phase of the received
ultrasound wave (Clement and Hynynen 2002b), the amplitude and duration of the sonication
used here are such that no appreciable change in skull temperature occurs during measurement.

A 500-element hemispherical ultrasound transducer was used to provide ultrasound
transmitters. Forty transducer elements were selected at random from the 500 total elements.
These elements were activated in turn while a 0.2 mm diameter polyvinylidene difluoride
(PVDF) hydrophone (Precision Acoustics, UK) located at the geometric centre of the
hemispherical transducer by a three-dimensional (3D) stepper motor positioning system
(Parker, Hannifin, Pennsylvania) was used as the receiver. This allowed the rapid assaying of
40 different acoustic paths through a particular calvarium. The phase information for each
acoustic path was acquired automatically using a pre-amp (Precision Acoustics, UK) recorded
by digital GPIB IEEE-488 compliant oscilloscope (Textronix, Oregon, Model 380). The
empirical experimental design here is similar to that used in Clement and Hynynen (2002a).

2.3. Genetic algorithm representation

A model for speed of sound in bone can be determined by admitting an initial large pool
of candidate speed-of-sound models, and ascertaining how well these simulations predict the
phase changes as established by empirical study. These speed-of-sound models are then used
to produce a new generation of speed-of-sound models that are similarly studied. However, it
is required that these speed-of-sound models be stated in a form amenable to manipulation by
genetic algorithms.

Bone may be considered to be a composite of inorganic mineral within an organic
framework. The mineral component is predominantly hydroxyapatite, which may be present in
a crystalline form with a density of up to 3170 kg m−3 (Katz 1971). Type I collagen contributes
90% of the organic material and, like most organic materials, has a density similar to that of
water (Lees 1986). The speed of sound in skull in bulk has not been reported to be greater
than 3500 m s−1. The fastest reported speed of sound for bulk ultrasonic propagation in wet
non-dental bone is 4180 m s−1 (Lees et al 1983), which was seen in cow tibia. Faster speeds
of sound are possible in dry bone as the collagen matrix stiffens, but this is not representative
of the in vivo case.

The genetic algorithm representation of the speed function is as five ‘knots’ arranged on
a graph with densities between 1000 and 3400 kg m−3, and speeds of sound between 1500
and 5500 m s−1. The speed of sound and density of water establish the lower bounds. The
upper bound is set slightly above the maximum possible density of 3170 kg m−3; optimization
techniques may perform poorly if the maximum of the optimization is located in a corner
of the search space, and this small margin potential alleviates that risk. The maximum
speed of sound is set higher than the reported maximum speed of sound, not only to aid the
optimization process but also because the reported maximum speed of sound above is given
as a bulk property and we must allow for the possibility that the speed of sound in some small
portion of the tissue may be much higher.

The continuous model of the speed of sound can now be represented in the discrete allelic
form required for this method of optimization (Poloni and Pediroda 1998, Shaffer and Small
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1996). The function c(ρ), the model speed of sound dependent on the local apparent bone
density, is generated from these allelic knots by minimizing (De Boor 1978)

ν ·
5∑

i=1

[ci − c(ρi)]2 + (1 − ν) ·
∫ 3400

1000

(
d2c

dρ2

)2

dρ (1)

where ci and ρi are the allelic knots, and ν is a numeric value between 0 and 1 that balances
the relative importance of fitting the knots closely with the requirement that the function c(ρ)
be reasonably smooth. This operation is part of the class of cubic smoothing splines. This
avoids the well-known problem with polynomial function fitting where the knots are perfectly
fit but the function displays unacceptable hilliness in between the knots. Selecting a value
of ν = 0.99 places strong emphasis on fitting the knots (the first part of the equation) while
providing acceptably smooth and responsive fitting in the regions between.

Functions that are not monotonically increasing or nearly so are discarded as unacceptable
genetic forms: all functions must satisfy the admissibility equation (2) where ctolerance is set to
200 m s−1,

c(ρ0) + ctolerance � max
1000<ρ<ρ0

(c(ρ)) 1000 < ρ0 � 3400. (2)

In optimization by genetic algorithm, it is important to allow a certain level of tolerance
in enforcing limits such as these so that potentially useful genetic alleles are not entirely
discarded out of hand. Curves such as those shown in figure 2 are representative of the types
of speed-of-sound models simulated.

A quantitative success function is required to measure the fitness of each particular speed-
of-sound model. A parameter θ e is calculated for each acoustic path; this is the error between
the phase change as calculated by the simulation and the phase change as measured empirically.
The success function is then defined as cos θe × 100%, i.e., the arithmetic mean of the cosines
of the θ e distribution as a percentage. The success function has a range of 100% for a perfect
correlation down to −100% for a perfect anti-correlation; the success function is a phase
correlation metric.

The alleles are stored as floating point numbers as shown in figure 2, hence the genetic
algorithm is of the real-coded type. Most original work on the robustness of genetic algorithms
was performed on binary-coded algorithms. However, by extension of the demonstration of
the robustness of genetic algorithms over non-binary alphabets (Antonisse 1989), real-coded
algorithms have also been shown to perform in accordance with Holland’s schemata (Holland
1975, Wright 1991).

Each generation of models is evolved from the previous one by the three steps of
competitive tournament selection, breeding based on allelic crossover, and the application
of a low rate of spontaneous mutation (Goldberg and Deb 1991).

Firstly, the tournament selection step is performed by selecting two models at random
from the current population. Of these two models, the one that produced the best score
using the success function is allowed to form part of the breeding pool that produces the next
generation. Models chosen in this way are not removed from the current population. This
produces a breeding pool that is guaranteed not to contain the worst performing model from
the current population, and should also favour the inclusion of better performing models.
This selection method has two further useful properties. It has limited susceptibility to being
overwhelmed early in the optimization process by a single highly successful model, which
can cause problems in genetic algorithm optimization due to loss of population diversity.
This selection method also is not dependent on the absolute value returned by the success
function and simulation method, but only on the relative value of the success function between
models: thus in this case, the only requirement is that a better speed-of-sound model should
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Figure 2. Examples from the population of potential speed-of-sound models.

generally produce a better result in the success function. In practice, this means that the
success function can exhibit nonlinear or noisy behaviour without adversely disturbing the
optimization process.



Unified model for speed of sound in cranial bone based on GAO 3931

Secondly, two parent models are selected at random from the breeding pool, and a new
child model is produced from this pair and becomes a member of the next generation. Eighty
per cent of the time, this new child model is produced by selecting a random point in its alleles
and including the alleles of the first parent model up to that point, and the alleles of the second
parent model after that point; this is known as allelic crossover. Twenty per cent of the time,
the child model is a direct copy of a parent. This tends to allow successful models to propagate
through to the next generation.

Thirdly, 10% of the time a random mutation is added to the alleles of a particular model,
with a permissible mutation range of ±200 kg m−3 and ±200 m s−1. While this mutation
rate would be high for binary-coded algorithms where a single bit mutation can produce a
huge variation in the numerical value it represents, it is appropriate for real-coded genetic
algorithms, which are more robust in this sense.

Any models in this new generation that are not physically valid by the criteria given above
are deleted, and the second and third steps above are repeated until a complete new generation
is produced. Once this is achieved, parallel processing is used to increase the speed of the
genetic algorithm optimization; many simulations are performed concurrently over a network
of computers (Koza et al 1999).

2.4. Simulation of acoustic propagation

It is vitally important that the acoustic path that is simulated matches the acoustic path studied
empirically. Each experimental calvaria is mounted in a stereotactic frame to ensure that it can
be rigidly and reproducibly positioned in the hemispherical array described in section 2.2. The
positions of the fiducial markers on the frames can be measured relative to the hemispherical
ultrasound transducer using a 3D Cartesian calibrated positioning system. By identifying
these same fiducial markers in the CT data, it is then possible to determine the geometric solid
body transformation from the orientation of the skull in the CT dataset to the orientation of the
skull in the experimental apparatus. This transformation can be represented in the classical
augmented matrix form




...
...

· · · R · · · T
...

...

0 0 0 1


 (3)

where R is a 3 × 3 matrix describing rotation of the skull and T is a 3-element vector
describing translation of the skull. The determinant of R is necessarily unity as we require
a solid body transformation since the skull does not change in size. A minimum of three
fiducial markers that are not colinear is required, although the fidelity of this transformation is
improved by using more markers. Determining the optimum values of R and T for arbitrarily
many fiducial markers is an over-determined problem; fortunately Horn (1986) developed an
elegant closed-form solution in quaternions for determining orientation in visual systems that
is mathematically equivalent to this problem. There is a unique correspondence between a
solid body transformation and its quaternion. A typical 3D computer reconstruction of the
skull CT data coupled with a 500-element hemispherical array is shown in figure 3.

As the bones of the skull are heterogeneous, an algorithm is required that is capable of
simulating acoustic propagation in a material with rapidly changing local acoustic properties.
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Figure 3. A computer reconstruction of a human calvarium showing its positioning within a
hemispherical transducer.

Acoustic propagation is simulated using a FDTD algorithm based on the following formulation
of the Westervelt equation (Westervelt 1963):

∂2p

∂z2
− 1

c2

∂2p

∂t2
+

δ

c4

∂3p

∂t3
+

2β

ρc4

[
p

∂2p

∂t2
+

(
∂p

∂t

)2
]

− ∂p

∂z
· ∂(ln ρ)

∂z
= 0 (4)

where p is the pressure of the acoustic wave, ρ is the local density, δ is the local acoustic
diffusivity, β is the coefficient of nonlinearity and c is the local speed of sound.

The local density at a particular point is generated from the CT scan of the calvarium. CT
scans return data as HU rather than as density. This problem can be overcome by ensuring that
a sample of both water and air appear in the CT scan. Since the densities of water and air can
be reasonably taken to be 1000 kg m−3 and 0.0 kg m−3, respectively, a linear normalization
relation can be produced where

κ1 = 1

Hwater − Hair
κ0 = −Hair

Hwater − Hair
(5)

and thus for any particular point we state that

ρct = κ1HU + κ0 (6)

where ρct is the apparent local density in kg m−3 based on the CT scan, and κ1 and κ0 are
constants with units of kg m−3, HU−1 and kg m−3, respectively.

For harmonic excitation, δ = 2αc3

(2πf )2 where α is the acoustic amplitude attenuation
coefficient and f is the frequency of the ultrasound wave. As stated in section 2.2, here f =
0.74 MHz to harness the skull acoustic window. While a precise consensus on the amplitude
attenuation coefficient is not available from the literature, a value of α = 167 × f

106 Np m−1

for cortical bone and α = 300 × f

106 Np m−1 for trabecular bone is consistent (Fry and Barger
1978, Theismann and Pfander 1949, Martin and McElhaney 1971). In order to decide which
α value should be used, we use the guideline that trabecular bone may be considered to be
that bone structure which is composed of 70% or less bone matrix (Gibson and Ashby 1997).
Cortical bone in bulk has a density of approximately 1950 kg m−3 (Fry and Barger 1978,



Unified model for speed of sound in cranial bone based on GAO 3933

Empirical
Transcranial
Propagation

Simulated
Transcranial
Propagations

Initial Population of
Acoustic Models

Empirical Phase
Compensations

Simulated Phase
Compensations

Fitness of Acoustic
Models

GA Breeding and
Mutation of

Acoustic Models

Final Acoustic
Model

The Genetic Algorithm Optimization Process

Figure 4. Block diagram of the genetic algorithm optimization of speed-of-sound model.

Abendschein and Hyatt 1970), so for the purposes of absorption we assign the higher value of
α to bone with ρct < (0.7 × 1950 + 0.3 × 1000) kg m−3, i.e., ρct < 1665 kg m−3.

The value of the nonlinear parameter β is set to zero, effectively simulating linear acoustic
propagation. The pressure amplitude of the ultrasound used empirically is sufficiently low for
nonlinear acoustic effects to be negligible; the Goldberg number 
 is also expected to be small
due to the high attenuation α (Blackstock 1964). Furthermore, the value of β in bone has not
yet been satisfactorily determined.

Discretization parameters �t and �z are chosen to ensure numerical stability in the
simulation. This requirement is enforced by requiring the Courant–Friedrichs–Levy (CFL)
number to be less than or equal to unity at all points, where CFL = c�t/�z (Taflove 1995).

2.5. The complete method by action

A genetic algorithm optimization structured as the block diagram in figure 4 provides a robust
method for determining an appropriate speed-of-sound model. The method is precisely defined
as the following steps:

1. The calvarium of a human skull is placed within a stereotactic positioning frame and
scanned at high resolution using a clinical CT scanner (Siemens Somatom Plus 4, Kernel
AH-82).

2. A 500-element hemispherical ultrasound transducer is placed in a baffled tank filled with
degassed and deionized water. A needle hydrophone is placed at the geometric centre of
the transducer.

3. A random selection of 40 elements is made from the 500 elements of the hemispherical
ultrasound transducer.

4. Each selected element is activated in turn and the phase of the ultrasound received at the
hydrophone is recorded, giving the phase shift between the transducer and the hydrophone
in water alone.

5. The calvarium is mounted between the transducer and the hydrophone using the
stereotactic apparatus so that the relative alignment of the transducer,skull and hydrophone
can be determined, and repeatedly established.

6. The 40 selected elements are again activated in turn and the phase of the ultrasound
received at the hydrophone is recorded. The differences between the phase measurements
without and with skull present are calculated.
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Figure 5. The final model for speed of sound in cranial bone based on apparent density by CT scan.

7. A 3D model of the skull is reconstructed computationally and the CT data in HUs is
normalized to apparent density. The alignment between the transducer and stereotactically
mounted skull is calculated.

8. The acoustic propagation is computationally simulated given a certain model of acoustic
velocity in skull bone. The phase changes predicted by simulation are compared against
the empirically measured phase changes.

9. This process is repeated across four skulls and for 50 initial speed-of-sound models.
10. The next generation of 50 speed-of-sound models are evolved using the principles of

genetic algorithm optimization, namely selection, mutation and crossover, as elaborated
in section 2.3 (Holland 1975, Goldberg and Deb 1991).

11. The process is repeated for 50 generations.
12. The best speed-of-sound model is chosen by selecting the model that has produced the

best phase correlation metric as defined in section 2.3.

3. Results

Ultimately, after 50 generations, the model shown in figure 5 was produced for the speed of
sound against apparent bone density by CT scan. This model is stated in numerical form in
table 1.

3.1. Statistical significance in phase correlation measurements

Since the speed-of-sound model generated in this paper was produced by its ability to generate
correctly model phase shifts across skull, the null hypothesis for this study is that the model
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Table 1. Speed of sound in cranial bone as a function of apparent bone density by CT scan in
intervals of 100 kg m−3.

ρct (kg m−3) c (m s−1) ρct (kg m−3) c (m s−1)

1000 1852.7 2300 2991.1
1100 2033.0 2400 3142.1
1200 2183.8 2500 3294.6
1300 2275.8 2600 3444.7
1400 2302.6 2700 3588.5
1500 2298.1 2800 3722.2
1600 2300.3 2900 3841.9
1700 2332.5 3000 3947.6
1800 2393.4 3100 4041.9
1900 2479.0 3200 4127.7
2000 2585.4 3300 4207.8
2100 2708.8 3400 4285.1
2200 2845.3

produces no better correlation between simulation and empirical data than would be produced
by choosing the modelled phase shifts randomly.

To determine whether the speed-of-sound model is statistically significant, it is first
necessary to characterize the distribution of randomly chosen phase shifts. This distribution
is shown in figure 6, and is based upon 100 000 trials of sets of 40 randomly generated phase
shifts.
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Figure 7. Statistical significance curve for the phase correlation metric.

A statistical significance curve as shown in figure 7 can then be calculated. For a
given phase correlation value, this curve gives the proportion of random phase assignations
that would be expected to produce a better phase correlation. Only 5% of random phase
assignations would be expected to produce a better phase correlation value than 27.3%, and
thus a model that is capable of producing phase correlations better than 27.3% is statistically
significant at p < 0.05 from the point of the view of the null hypothesis described above.

In fact, the best speed-of-sound model generated by the genetic algorithm produced a
phase correlation value of 53.4%, and is therefore very highly significant. Previous work in
the literature of speed of sound of models for bone includes an interesting model proposed
by Clement and Hynynen (2002a) based upon assigning an effective speed of sound to a
region of skull based on an average of the densities in that region obtained by CT scan
(Clement and Hynynen 2002a). The relationship between effective speed of sound and density
in Clement and Hynynen (2002a) is

ceff = 2.06ρ − 1540 (7)

where ceff is in m s−1 and ρ is in kg m−3. When applied to the data in this study, this
model produced a phase correlation value of 49.2%; it is therefore outperformed here by the
speed-of-sound model produced by genetic algorithm. The result of 49.2% is also very highly
statistically significant by the method described above.

3.2. Comparison of the genetic algorithm speed-of-sound model to a speed-of-sound model
based on the homogenization of skull

This paper describes the production of a general model for the speed of sound in skull, based
upon the analysis of a finite number of experimental calvaria. This problem is therefore of the
class of problems where an optimization process is used to produce a generally applicable result
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Figure 8. Comparison of the performance of the linear speed model and the genetic algorithm
speed model for a skull not used in the optimization process.

from a pool of empirical data. Therefore, it must be established that the genetic algorithm has
general applicability by using it in the analysis of ultrasound propagation through a calvarium
that was not used in the optimization procedure. This is necessary to show that the optimization
is not over-trained; over-training occurs when an algorithm performs well on members of the
original dataset against which it was formed, but performs very badly on novel datasets.

An unused calvarium was placed in the same experimental apparatus as described in
section 2.2 above, and the phase shifts due to transcranial propagation of the ultrasound were
measured in 116 elements corresponding to the top 6 layers of the 500-element hemispherical
array as shown in figure 3. The top six layers were chosen because elements chosen near
the rim of the transducer in this experimental configuration may have greater accessory
pathways to the focus point through water without impinging on skull, as may be inferred
from figure 3. Choosing the elements that comprise the top 6 layers of the transducer gives a
representative number of elements over which to compare the two models while also ensuring
transcranial propagation to the focus. Ultrasound propagation was modelled using the FDTD
algorithm described in equation (4). However, two simulations were run: the first simulation
used the effective density speed-of-sound model (Clement and Hynynen 2002a) as shown in
equation (7), and the second simulation used the speed-of-sound model derived in this paper
by genetic algorithm optimization as shown in figure 5 and table 1.

The distribution of θ e (as defined in section 2.3) for each of the two speed-of-sound
models is shown for this novel calvarium in figure 8. These curves show the proportion of
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Figure 9. CT cross section showing an instance of complex lacunar structure.

elements that have a θ e greater than a particular error margin; all curves must begin at 100%
at θ e = 0◦ and end at 0% at θ e = 180◦. Better algorithms have traces that run lower on
the graph. The genetic algorithm speed-of-sound model outperforms the effective density
speed-of-sound model across the range of θ e. In particular, it is apparent that the effective
density model suffered by having over 30% elements with θ e > 90◦, which counts poorly in
the phase correlation metric cos θe × 100% as defined in section 2.3.

The effective density model produced a phase correlation metric of 28.36%. The genetic
algorithm speed-of-sound model, however, produced a phase correlation metric of 44.8%,
which is markedly better when judged in light of the statistical analysis given above in
section 3.1. Furthermore, this result is of a broadly equivalent level of performance to that
seen with the calvaria used in the optimization procedure, and as such refutes the presence of
substantial over-training in the speed-of-sound model.

The presence of elements with θ e > 90◦ with the genetic algorithm speed-of-sound model
appears to be due primarily to anomalies in the material geometry of the skull that are not
well analysed by the comparatively simple one-dimensional (1D) FDTD model described in
equation (4). In particular, these errors tend to arise when complex lacunae are present in the
simulation; figure 9 shows a portion of the CT data for such a case where a substantial lacuna
is present in the inner table of the calvarium along the simulation path. Of the elements with
θ e > 90◦ with the genetic algorithm speed-of-sound model, 73% had readily apparent lacunae
on the simulation path on inspection. Ideally the genetic algorithm optimization would be
conducted with a full 3D simulation of acoustic propagation. However, even using suitable
distributed computing techniques to perform the optimization in this way with an equivalent
population of speed models and number of generations might be expected to have taken several
years with the currently available computing power. Consequently, a full 3D treatment is not
possible at this time.

4. Discussion

This paper describes a novel method for establishing a model of the speed of sound in cranial
bone. An important difference from previous work is that this method produces a model
for the speed of sound at any particular point in the skull; the model is not dependent on
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dividing the cranial bone into regions or layers, or on ascribing homogenized properties to
any part of the skull. This model is valid for cranial bone of both cortical and trabecular
structure, and is based on a coupled strategy of genetic algorithm optimization of CT-based
acoustic simulation and empirical measurement of the change in phase of an ultrasound wave
on transmission through human calvaria.

The paper also details the results of this novel method in the form of a model for the
speed of sound in cranial bone dependent on local density as shown in figure 5 and as
described in section 3, and further establishes the statistical significance of this result and
compares its performance to another speed-of-sound model in the literature Clement and
Hynynen (2002a). As indicated in the introduction, this improvement in the characterization
of the acoustic properties of cranial bone is necessary for the development of non-invasive
transcranial focused ultrasound surgery.

Non-invasive transcranial focused ultrasound surgery requires precise a priori prediction
of the distortion introduced into the acoustic field by the presence of the skull; this distortion
cannot be determined without a thorough knowledge of the geometry of the skull and its
acoustic properties. The distribution of the speed of sound in the skull is the most important
of these acoustic properties since it most affects the phase of the transmitted ultrasound wave.

The modelling process described in this paper makes certain assumptions about the
nature of trabecular orientation in cranial bone, the use of CT data to provide apparent
density measurements and the use of phase measurements as a basis for optimization; these
assumptions and the justifications for their use are discussed below. The speed-of-sound
model produced in this paper is then compared to prior notable work on entirely homogeneous
models for the speed of sound in skull bone (Fry and Barger 1978, Theismann and Pfander
1949, Martin and McElhaney 1971, Duck 1990).

4.1. Trabecular orientation

The speed-of-sound model derived in this paper is expressed in the form c(ρct), which implicitly
disregards the direction of propagation of the ultrasound wave. Some studies (Lees et al 1983,
Nicholson et al 1994, McCarthy et al 1990) have found marked anisotropy in the speed of
sound of ultrasound in bone, which would require a model of the form c(ρct, u) with u as
the vectorial direction of propagation. However, these studies have been performed in such
bones as the calcaneus, long bones of the leg or vertebral bodies—in these cases, the bone
is clearly placed under a predominant mechanical loading which gives rise to an equivalent
orientation in the trabecular lattice. Faster acoustic propagation is found where u is parallel
to the direction of mechanical loading; this faster propagation velocity is accounted for by
acoustic bar wave propagation directly down the trabecular framework and is not strongly
correlated to the density of the bone (Nicholson et al 1994). In contrast, cranial bone is self-
evidently not placed under routine directional loading, and so there is little mechanical stimulus
towards any particular trabecular orientation (White 1986). Furthermore, transcranial acoustic
propagation places stringent requirements on the range of permissible propagation directions;
the high level of acoustic absorption in skull requires that the direction of propagation be
close to normal to the surface of the skull to shorten the path in bone and hence permit a
sufficiently intense intracranial acoustic field to be developed. As described earlier, the direct
wave strongly dominates in transmission through the skull for angles of incidence within 20◦

of normal (Hayner and Hynynen 2001) and therefore the effect of u on the production of the
shear mode of acoustic propagation may be neglected.

The model used in the genetic algorithm optimization process also does not include any
special treatment of potential ultrasound scattering in trabecular bone. However, Chaffaı̈ et al
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(2000) have already treated this matter, in which it was found that ‘at frequencies less than
1 MHz (the clinically useful frequencies), no broadening of the transmitted pulse temporal
profile, apart from the effect of the frequency dependent attenuation, has been evidenced’ and
that ‘for the time being, experiments do not suggest the presence of strong multiple scattering’.

Given these practical constraints on u for acoustic use and the non-orientation of the
cranial trabecular framework, the c(ρct) formulation is sufficient.

4.2. Generalization of apparent density

The model described here is based on ρct, since in patient studies only the apparent density
obtained from the CT scan could be expected to be available. However, this leaves the question
of whether this apparent density is suitably close to the true density of the material. The use
of anatomic specimens of human calvaria in this study allows us to address this question by
examining the effect of one further simple constraint on the conversion of HUs to CT data; we
may require that the sum of the apparent densities of all CT points identified as being skull
bone multiplied by the volume of a voxel of CT data be equal to the empirically measurable
mass of the calvarium. A quadratic conversion between HUs and skull density can then be
established based on this mass requirement, the density of air and the density of water. The
correlation between this quadratic conversion and the original linear conversion provides an
estimate of the reasonableness of using ρct and also allows the c(ρct) model to be generalized
to other methods of acquiring bone density information.

Given a calvarium of mass M, therefore

M =
∫ ∫ ∫

skull

ρ · dV ∼=
∑
skull

ρ · �V ⇒ M

v
=

∑
skull

ρ (8)

where v is the volume of a voxel of CT data. Now, using a quadratic conversion of HUs

M

v
=

∑
skull

(κ2 HU2 + κ1 HU + κ0)

⇒ M

vnskull
=

[
1

nskull

∑
skull

HU2 1

nskull

∑
skull

HU

]
[κ2 κ1 κ0] (9)

where nskull is the number of voxels identified as representing the calvarium, and κ values
are parameters of the quadratic conversion. The parameters of the conversion can then be
established by solving the following relationship:


1

nair

∑
air HU2 1

nair

∑
air HU 1

1
nwater

∑
water HU2 1

nwater

∑
water HU 1

1
nskull

∑
skull HU2 1

nskull

∑
skull HU 1





κ2

κ1

κ0


 =


 ρair

ρwater
M

vnskull


 (10)

where nair and nwater are the number of voxels identified as representing air and water. This
solution method may be extended over any number of CT scans of different calvaria by adding
further lines to the relationship given above using the appropriate M, HU and nskull values
in each case. The resulting system of equations is over-determined but may be solved for
the best values of the κ parameters using the standard least-squares metric; the rows of the
linear system should be normalized to account for the different values of nair, nwater and nskull

to prevent unacceptable weighting of the solution in the least-squares method. Based on the
calvaria used in this study we find κ parameters of [κ2 κ1 κ0] = [−8.837 × 10−5 1.092 –36.8],
which is very nearly linear over our region of interest.
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4.3. Limits on phase-based inference of speed-of-sound models

Since this speed-of-sound model is based on the optimization of phase-shift information,
it is appropriate to enquire whether this model might be skewed by this method. Phase-
shift information may only take values between 0 and 2π radians since phase is periodic by
definition. Consequently, it is not possible to distinguish a phase shift of φ radians from a
phase shift of φ + 2π radians since they are obviously identical modulo 2π . This is a problem
of wrapping in phase.

If we consider the assigning of a particular speed of sound to a particular local density,
this problem of phase wrapping might occur if the true speed of sound for that local density
was sufficiently different from the speed of sound in the model. We can estimate the limits
of this problem by calculating the size of error in the speed of sound required to produce this
phase wrapping uncertainty.

Given an ultrasound frequency of f , a material thickness of x and a speed of sound of c0,
the phase shift φ across the material would be expected to be

φ = 2πf x

c0
. (11)

The limits we seek are the increase and decrease in c0 necessary to produce a phase shift of π

in the predicted phase

φ + π = 2πf x

c0 − �clow
φ − π = 2πf x

c0 + �chigh
. (12)

By re-arrangement, the following limits can therefore be established:

�clow = c0 − 2c0f x

2f x + c0
�chigh = 2c0f x

2f x − c0
− c0. (13)

Thus, if the model speed of sound is c0, but the true speed of sound is c0 + �chigh, this will
produce the same phase-shift information as if the true speed of sound were c0 − �clow.
Fortunately these limits are wide enough, as shown in figure 10, for this problem not to occur
in practice in this optimization.

4.4. Comparison to other prior work

Bone, in its cortical and trabecular forms, may be considered to be a form of cellular solid.
Cellular solids are those materials that are composed of a material lattice, that latticework
forming either open or closed pores (Gibson and Ashby 1997).

The most straightforward model for speed of sound in a material is

c =
√

E

ρ
(14)

where E is the Young’s modulus of the material and ρ its density. However, for open-pore
cellular materials it can be shown that E ∝ ρ2and that for closed-pore materials E ∝ ρ3

(Gibson and Ashby 1997).
This curve of speed of sound against bone density obtained in our study has a form in

keeping with these theoretical material properties of skull. Initially, it has a form similar to that
of a square root function of speed against density for an open-celled porous solid, as would be
the case for low volume fraction trabecular bone. The model transitions into a linear region in
keeping with the material structure of dense cortical bone. The transitional region is between
1665 kg m−3, the upper limit for the density of bulk trabecular bone based upon the 70% bone
volume fraction requirement and 1950 kg m−3, the density for the bulk of cortical bone.
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Figure 10. Speed of sound limits in phase based optimization.

Using the values of ρct for the calvaria in this study, the distribution of c in each calvarium
can be calculated based on the model we have described. An appropriate average of the
distribution of c provides a basis for comparison with pre-existing measurements of the speed
of sound in bone.

The most appropriate average for the distribution of c is not the simple arithmetic mean
of c. If we consider a very simple model for the propagation of a wave through some
heterogeneous material, the time taken for the wave to travel through the material t is

t =
∫

1

c(x)
δx. (15)

Now if the material has thickness x then the average speed of sound cav through the material
becomes

cav = x

t
= x

(∫
1

c(x)
δx

)−1

(16)

and so

cav = (c−1)−1 (17)

where c−1is the arithmetic mean of the distribution of the reciprocal of c. Calculating
for the four calvaria here, bulk cav speeds of sound of 2609.9 m s−1, 2884.8 m s−1,
2829.9 m s−1 and 2756.8 m s−1 can be found. These values are entirely in keeping with the
range of values seen in the current literature (Fry and Barger 1978, Theismann and Pfander
1949, Martin and McElhaney 1971, Duck 1990).
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5. Conclusion

The genetic algorithm optimization method coupled to acoustic simulation and experimental
phase measurements provides a useful method for determining the variation in speed of
sound in cranial bone with density. The model produced in this paper using this method has
been shown to predict the speed of sound in transcranial propagation better than pre-existing
homogenized speed of sound methods. Finally, it must be cautioned that the model in this
paper is based on measurements of the acoustic properties of a limited number of formalin-
preserved human cadaveric skulls and therefore it cannot be safely assumed without further
study that the model is representative of the entire population of human skulls or of in vivo
transcranial propagation.
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