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Chirp-encoded excitation has been utilized for increased signal-to-noise ratio (SNR) in both linear

and harmonic imaging. In either case, it is necessary to isolate the relevant frequency band to avoid

artifacts. In contrast, the present study isolates and then combines the fundamental and the higher

harmonics, treating them as a single, extended bandwidth. Pulse-inverted sum and difference sig-

nals are first used to isolate even and odd harmonics. Matched filters specific to the source geometry

and the transmit signal are then separately applied to each harmonic band. Verification experiments

are performed using up to the third harmonic resulting from an underwater chirp excitation. Analy-

sis of signal peaks after scattering from a series of steel and nylon wires indicates increased com-

pression using the extended bandwidth, as compared to well-established methods for fundamental

and second harmonic chirp compression. Using third harmonic bands, a mean pulse width of 56%

relative to fundamental compression and 48% relative to second harmonic compression was

observed. Further optimization of the compression by altering the transmission indicated 17% addi-

tional reduction in the pulse width and a 47% increase in peak-to-sidelobe ratio. Overall, results es-

tablish the feasibility of extended bandwidth signal compression for simultaneously increasing

SNR and signal resolution. VC 2011 Acoustical Society of America. [DOI: 10.1121/1.3625236]

PACS number(s): 43.25.Cb, 43.80.Qf, 43.80.Vj, 43.60.Ek [OAS] Pages: 1810–1819

I. INTRODUCTION

Ultrasound coded excitation schemes1 have become an

established technique for enhancing signal-to-noise (SNR)

ratios in ultrasound imaging.2–4 Originating from signal com-

pression techniques in radar,5 a wide range of ultrasound-tai-

lored approaches1,6–11 have been developed. Accordingly,

various medically motivated applications have been investi-

gated2,12–15 including its potential as a method for harmonic

imaging with contrast bubbles.2,16–18

Regardless of specific technique, methods follow a com-

mon fundamental principle: to extend a signal in time, so that

its total energy far exceeds that of an equivalent impulse.19

Pulse compression, i.e., temporal localization, of the received

signal is then achieved through matched filtering.20 In prac-

tice, this operation adds complexity to an imaging system

while increasing processing time, motivating the development

of faster6–8,21 and more optimized implementation.12,22–24

Despite adding complexity, the approach can have particular

advantage in medical applications, where limits pertaining to

the pulse amplitude, e.g., spatial-peak peak-average intensity

(Isppa) and mechanical index can be substantially lowered

while maintaining the same overall temporal average, e.g.,

spatial-peak temporal-average intensity (Ispta).
25

Pulse compression for nonlinear signals has also been per-

formed.16,17,27 These nonlinear methods operate by isolating

higher harmonic signal components, which are then filtered in

a manner similar to linear pulse compression. Although still

band-limited, the second harmonic generally offers increased

radial focusing abilities and a potentially broader bandwidth

relative to the fundamental. Unfortunately, such techniques

can suffer artifacts caused by overlap between the harmon-

ics.27 Moreover, isolated use of the harmonic signal for com-

pression can become degraded due to increased absorption as

a function of frequency.28

The present work studies an alternative approach to non-

linear compression that combines the fundamental and

higher harmonics, effectively treating them as a single band.

This extended bandwidth permits a significant increase in the

ability to compress a signal. Successfully implemented, the

method would permit enhanced image resolution while ben-

efiting from the increased SNR offered by encoding.

However, phase trends between the fundamental signal

and the harmonics can differ substantially, making the design

of an extended matched filter nontrivial. These potentially

detrimental phase differences are the primary barrier to

directly combining the harmonics. Generally, the phase rela-

tion between an initial pulse and the harmonics it generates is

a function of input pressure, temporal and spatial beam-

shape, and aperture geometry.29 Moreover, as energy from

higher harmonics is continually transferred back into the fun-

damental frequencies, the fundamental’s phase is also altered

as a function of distance. Attempts to compress a signal by

simple cross correlation could be limited, or even cause deg-

radation, as compared to linear compression. Therefore, fur-

ther modification of the signal is clearly necessary if the

approach is to be affective.
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The modification proposed here involves a multistage

approach, originating from a signal that starts as a modified

linear chirp transmission.2 Using a standard pulse inversion

technique, two signals—each an inverted version of the

other—are transmitted in order to separate even and odd har-

monics of the received signal. Phase analysis is used to form

separate matching filters for the first, second, and higher har-

monics. Specifically, acceleration of the signal phase angle

is determined from the second derivative with respect to fre-

quency of each signal’s Fourier transform, whereas the first

derivative provides information on any relative phase offset

between the different harmonics. Matched filters are then

formed from this analysis. In practice such filters could be

designed a priori. In a final stage, the higher harmonics are

amplified at the time of acquisition, based on a one-dimen-

sional optimization of the signal.

The theoretical foundation for the method is outlined

here, followed by experimental verification using underwater

ultrasonic measurements. Compressed pulses are evaluated

by comparison with signals formed by correlation of the fun-

damental and second harmonic signals, respectively. Optimi-

zation of transmission pulses is considered, as well as an

assessment of the approach under noisy and attenuating

conditions.

II. THEORY

A. Physical basis

The linear combination of two or more frequency-

shifted, but otherwise equal frequency bands will result in a

time domain signal whose modulation amplitude is identical

to that of a single band. Thus, simply combining bands does

not imply increased temporal localization. Compression

beyond that of the modulation width, rather, requires cancel-

lation between the carrier and modulating functions. This

process can be illustrated analytically for the case of a box-

car function. The maximum time-domain compression—i.e.,

signal localization—about the origin occurs when the phase

of the function’s Fourier transform is a constant with respect

to frequency.2 In this case, integral components of the

inverse transform will be in phase at time t¼ 0. For a func-

tion defined in terms of constant amplitude P0, center fre-

quency xc, and bandwidth xb,

P1 xð Þ ¼ P0; xc � xb=2 � x � xc þ xb=2

0; otherwise;

�
(1)

the inverse Fourier transform (IFT) may be expressed in

terms of a continuous-wave signal of frequency xc, modu-

lated by an unnormalized sinc function,

p1 tð Þ ¼ IFT P1 xð Þf g ¼ P0xbeixctsinc xbt=2ð Þ: (2)

The relevant case combines the fundamental and propaga-

tion-generated second harmonic, comprising two bands cen-

tered about xc and 2xc, and differing in amplitude by a

factor r. Ideally, the bandwidth of the second harmonic is

twice the fundamental, but will generally be smaller due to

frequency dependence of both the rate of nonlinear buildup

and absorption. In an example case where bandwidths are

equal, by Eq. (1) the total spectrum is P(x)¼P1(x)

þ rP1(x�xc). Using the shift property of Fourier trans-

forms, it follows from Eq. (2) that the time-domain represen-

tation of this function is then given by

p tð Þ ¼ P0xbeixctsinc xbt=2ð Þ 1þ reixct
� �

(3)

Noting that zero crossings of Eq. (3) due to the sinc term

occur at nonzero even integers,

p tð Þ ¼ 0; t ¼ 6np
xb

; n ¼ 2; 4;…; (4)

whereas minima of the modulus of the second bracketed

term occur at odd integers:

p tð Þ ¼ 0; t ¼ 6np
xc

; n ¼ 1; 3;…; (5)

when xc � xb the sinc serves to suppress all extrema of the

carrier, except at the origin. This results in reduced sidelobes

and as r) 1; a signal peak approximately equal to a single

band with center frequency 3xc=2 and bandwidth 2xc. In

the case where xc � xb, the signal envelope is equal to the

modulus of the sinc function, and thus the signal width is

determined by the modulation.

Similar behavior occurs for bands consisting of smooth

functions. A Gaussian-shaped band will produce a Gaussian-

shaded time domain signal, but two combined bands

will contain periodic peaks. or two peaks defined by

the envelopes exp½� x� xcð Þ2 4
ffiffiffiffiffiffiffi
ln 2
p

=x2
b� and r exp½� xð

�2xcÞ24
ffiffiffiffiffiffiffi
ln 2
p

=x2
b�, such that their half-maxima are equal to

xb, the inverse Fourier transform30 gives

p tð Þ ¼ xb

4

ffiffiffiffiffiffiffiffiffiffiffi
pffiffiffiffiffiffiffi
ln 2
p

r
e �x2

bt2=16
ffiffiffiffiffiffiffi
ln 2
p� �

� e ixctð Þ 1þ r e ixctð Þ½ �: (6)

Once again the shift property has been utilized to combine

the signals.

Defining a precise optimal bandwidth for waveforms is

arbitrary, depending upon whether minimizing the beam-

width or sidelobes takes precedent, but will generally entail

an optimization of the two. For illustration, the examples

above use only two identical-width bands. Generalization to

N bands and asymmetric bandwidths—although more cum-

bersome to express analytically—have related behavior.

Figure 1 illustrates such an example by comparing two

asymmetric narrow band cases resulting from a second har-

monic 0.5� the amplitude of the fundamental with both a

relatively narrow band (0.244xc), and a broader bandwidth

(0.667).

Building on this basis, the goal of the extended bandwidth

approach will be to produce a transmitted pulse that, upon the

buildup of nonlinear harmonics will produce a bandwidth

that can produce temporal localization exceeding that of a

given single band. In Sec. IV, a range of relative bandwidths

resulting from a chirp signal are considered. Additionally, the
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effects of bandwidth shape is examined for a range of func-

tions having relatively flat bandwidth but smooth cutoff, i.e.,

functions intermittently shaped between Eqs. (3) and (6).

B. Frequency domain representation

Generation of frequency bands for compression is based

on the transmission of a linear chirp of duration T. In the

time domain, the function can be represented by

p tð Þ ¼ p0 tð Þ e i x0tþða=2Þt2ð Þ½ �; 0 � t � T
0; otherwise;

�
(7)

where p0(t) is a weighting function, a is the angular accelera-

tion of the signal, and the instantaneous frequency is given

x¼x0 at t¼ 0 and x¼x0þ aT at t¼T. Considering first

the case where p0 is time-independent, the Fourier transform

of Eq. (7) can be written in the form

p xð Þ ¼ p0 e �i
x� x0ð Þ2

2a

" # ðT

0

e i
a
2

t� x� x0

a

� �2
� 	

dt:

(8)

Substituting so that
ffiffiffiffiffiffiffiffi
a=2

p
t� x� x0ð Þ=af g ¼

ffiffiffiffiffiffiffiffi
p=2

p
n, so

that

t ¼ 0; n0 ¼ �
ffiffiffi
a
p

r
x� x0

a
;

t ¼ 0; n1 ¼
ffiffiffi
a
p

r
T þ x� x0

a

n o
; (9)

a change of variables then allows Eq. (8) to be rewritten as

P xð Þ ¼ p0 e �i
x� x0ð Þ2

2a

" # ffiffiffi
p
a

r ðn1

n0

e i
p
2

/n2
� �

dn: (10)

In this form, the integral in Eq. (10) can be expressed in

terms of the Fresnel integrals C(x) and S(x), defined by

C xð Þ þ iS xð Þ ¼
ðx

0

exp i
p
2

t2
� �

¼
ðx

0

cos
p
2

t2
� �

dtþ i

ðx

0

sin
p
2

t2
� �

dt: (11)

As the Fresnel integrals are odd functions, along with the inte-

gral limits in Eq. (9) they confine the phase of the integral in

Eq. (10) to the first quadrant. The main contribution to phase

change with frequency is therefore exp½�i x� x0ð Þ2= 2a�
Further, if the first-quadrant phase fluctuations introduced by

the Fresnel integrals are assumed to have a negligible net

effect on compression, then optimal compression can then be

achieved through multiplication by exp½�i xð �x0Þ2=2a�.
If nonlinear propagation is considered, however,

the phase relation between the fundamental and harmonic

frequencies must also be considered. In general, this

phase is a function of transmission pressure, beam shape

and aperture geometry, making it potentially difficult

to predict. In a lossless medium, a received signal’s mth

harmonic band due to reflection at N locations can be

written as

Pm xð Þ ¼ Pm0
e �i

x� xm0
ð Þ

2am

� 	
e �iTmxð Þ

XN

n¼1

qm;n

� e �i2
Zn

c
x


 �
; xm0

� x � xm1
; (12)

where Tm represents a temporal offset between the harmon-

ics and qm,n are the scattering strengths of the mth harmonic

signal. An example of such a signal is provided in Fig. 2,

using data collected per the experimental arrangement

described in Sec. II A. Waves are assumed to propagate line-

arly after scattering. In a weakly nonlinear case a1 is approx-

imately equal to the angular acceleration of the transmitted

signal a. However a1, and its higher harmonic equivalents

are currently regarded as constants of the equation, to be

determined.

A received time-domain signal pþ(t)¼ p1(t)þ p2(t), and

its corresponding pulse-inverted signal p�(t)¼�p1(t)
þ p2(t) can be separated by, respectively, taking 1/2 of the

addition and subtraction of the two signals. Provided that the

even and odd Fourier transformed bandwidths are suffi-

ciently spaced to separate the mth and mthþ 2 bands, then

Eq. (12) may be approximated. The transforms may be

arranged in a form recognized as series of pure imaginary

linear equations,

Im
1

Pm

dPm

dx

� �
¼ � 1

am


 �
xþ x0

am
� 2

z

c
� Tm


 �
; (13)

where the parenthetical terms on the right-hand side of Eq.

(13) give slope and intercept values, respectively. Solving

for these values by linear regression, and combining equa-

tions to eliminate z/c allows a matched filter for Eq. (12) to

be written as

FIG. 1. Time-domain amplitudes of a two-band signal with a 24% (upper)

and 67% (lower) bandwidth of center frequency fc. The second band is 1/2

the amplitude and approximately 1.8 times wider and twice the center fre-

quency of the fundamental. The dotted line shows the fundamental’s time-

domain amplitude for comparison.
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~Pm xð Þ ¼ e i
x� xm0ð Þ2

2am

" #
e iTmxð Þ: (14)

In theory these matching filters could be determined, or at

least approximated, by a calibration procedure for a given

array and application. The overall process is illustrated in

Fig. 3 using scattering data described in detail in the next

section. Figure 3 shows the Fourier transformed amplitude

of an example signal plus/minus its inversion. This trans-

formed signal is processed according to the left-hand side of

Eq. (13), before (center) and after (bottom) the application

of Eq. (14).

Once phase matched, further compression of the signal

is possible through amplification of individual bands. The

optimal extent of amplification is specific to the signal, so

that this process is suitable for application after acquisition.

As time-separated reflections appear as interference peaks in

the frequency domain, direct normalization of the signal

would remove this information. Hence, an amplitude filter

consisting of a uniform elevation of each harmonic is

applied. Presently, the optimum value of the increase is

determined through a 1D optimization that minimizes the ra-

tio between first local maxima and the signal peak of a suc-

cessively larger number of harmonics. Initially, only the first

and second harmonic signals are combined,

~popt tð Þ ¼ IFT P1 xð Þ ~P1 xð Þ þ N2P2 xð Þ ~P2 xð Þ

 �

; (15)

where the resultant signals is evaluated over a specified

range, N2, and noting that the functions of P1 and P2 may

overlap. This adjusted signal can then be used to select the

amplification for the third harmonic

~Popt tð Þ ¼ IFT P1 xð Þ ~P1 xð Þ þ N2P2 xð Þ ~P2 xð Þ



þ N3P3 xð Þ ~P3 xð Þ
�
: (16)

In theory, the process can be repeated for an arbitrary num-

ber of harmonics, but has been verified experimentally in the

following up to three harmonics (Sec. IV).

III. MATERIALS AND METHODS

A. Verification

An initial underwater ultrasound experiment was

devised to test the approach using the first three harmonics

of a signal scattered from small objects. The goal of this

experiment was to verify that data acquired experimentally

could be compressed in the manner predicted by theory and

FIG. 2. Overlapping chirp signals due to scattering from three objects. The second and third objects are 0.5 and 5 mm, respectively, from the first.

FIG. 3. (Top) Amplitude of the Fourier transformed signal consisting of

odd harmonics acquired by summation of a signal and its inversion (left)

and even harmonics produced from the signal differences (right). (Middle)

Derivative of phase with respect to frequency for the odd harmonic (left)

and even harmonic (right). (Bottom) Derivative of phase with respect to fre-

quency after application of a weighting factor to remove quadratic terms.
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a preliminary simulation study,31 as well as to quantify dif-

ferences between the proposed and existing compression

methods.

A 13 mm diameter, 5 MHz center-frequency circular

planar transducer (Sonix, Inc., Type IS0513L) was selected

as a transmitter. The input signal was a linear chirp with pa-

rameters similar to a prior simulation study,31 approximating

Eq. (7) with p0 constant.

Transducer bandwidth was determined by impulse

response measurement. Based on this measurement, a 2.46

ls time sweep was generated using x0 ¼ 2p� 3:4 MHz and

x1 ¼ 2p� 6:4 MHz. Fresnel integrals given in Eq. (11)

were calculated to generate phase fluctuations of less than

612� from the mean phase in this configuration. These sig-

nals were uploaded through a GPIB interface to an arbitrary

waveform generator (NF Electronic Instruments, model

1940, Yokohama, Japan) and amplified by a power amplifier

(Kalmus, model 150c, Bothell, WA). Success of the com-

pression scheme was evaluated under the conditions of over-

lapping signals caused by scattering from thin wires. Two

types of wire, 0.17 mm diameter nylon c ¼ 2:6� 103 m=s;ð
q ¼ 1:1� 103 kg=m3Þ and 0.1 mm diameter steel c ¼ 5:8ð
� 103 m=s; q ¼ 7:9� 103 kg=m3Þ, were investigated sepa-

rately. As illustrated in the upper frame of Fig. 4, three steel

wires or three nylon wires were aligned within the path of a

directed ultrasound field, such that the wires were extended

at normal angles through the field’s axis of propagation.

An 8 mm diameter focused transducer with a 12 mm ra-

dius of curvature (Custom build, SN: PT40-8-12, Toray En-

gineering Co.) was selected as a receiver based on its wide

bandwidth, which ranged from below the transmitted band-

width range to above the measurement cutoff frequency of

20 MHz. Received signals were sent through a low-pass fil-

ter set at 20 MHz and amplified (Panametrics, model

5073PR, Waltham, MA) before being recorded by a digital

oscilloscope (LeCroy, model 6051, Chestnut Ridge, NY) at

an 8-bit vertical resolution.

Due to the small sensitivity range of the receiver,

backscatter measurements could not be performed without

the receiver blocking the transmitted wave. Thus, an alter-

native experimental configuration was devised with the

receiver’s axis of symmetry situated perpendicular to the

transmission field, the two axes intersecting in the region

of the wires. The receiver was adjusted with the aid of a

positioning stage, such that the wires were situated approxi-

mately within the same surface of constant receiving phase,

and at a distance where the sensitivity was relatively flat

across the 5 mm distance between the outermost wires. In

this way, the times-of-flight between each wire and the

transducer were approximately equal, allowing time delays

to be equated to the distance between wires. The received

signal was processed and evaluated for (i) the ability to

maintain compression in the presence overlapping signals,

(ii) the ability to differentiate between scattering locations,

and (iii) for the accuracy of the reconstructed scattering

locations. In all experiments, two wires were situated 5.0

mm apart. A third wire was placed between the two, at dis-

tances of 0.5, 1.0, 2.0, and 3.0 mm from the wire closest to

the transmitter.

Data were acquired in four separate experiments. Two

were conducted in the near-field, including 0.17 mm diame-

ter nylon wire placed from z1¼ 143 mm from the transducer

and 0.1 mm diameter steel wire placed from z1¼ 192 mm

from the transducer. Far-field measurements for both the ny-

lon and steel wire were conducted starting from z1¼ 252

mm from the transducer.

In an additional measurement set, the SNR was also

investigated as a function of input amplitude. The SNR, as

defined by the ratio of the mean signal to the standard devia-

tion of the noise, was determined for both the raw and proc-

essed signals over this range. The signal was taken to be the

period initially defined over a clearly defined (low-noise)

pulse, and the SNR was calculated over all other points. In

these measurements the center wire was fixed 1 mm from

the first, whereas the voltage input to the power amplifier

was varied between 5 and 400 mV, with regular 10 mV

intervals below 50 mV (plus a measurement at 5 mV) and

with 50 mV intervals up to 400 mV.

FIG. 4. (Color online) The experimental setup con-

figured for (upper) normal scattering and (lower)

backscattering.
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B. Calibration

Prior to processing, the signal from a single wire was

used to calculate the matched filters given by Eq. (14).

Numeric values for the slope and intercept were determined

over the frequency ranges where the first or second harmonic

was most prominent. This range was arbitrarily selected as

40% of the signal peak. A least squares approach was used

to fit the data, providing the slope and intercept values.

The slopes were observed to be approximately linear in

the frequency bands where the signal amplitude is highest,

indicating the phase approximates a second-degree polyno-

mial, and validating the assumptions of the development of

Eq. (14), at least for the present case. The substantial slope

difference between the harmonics is also noted a1¼1:49ð
�1013 rad=s2; a2¼2:91�1013 rad=s2; a3¼6:07�1013 rad=s2Þ
as this behavior is the primary motivation of the present

work.

C. Pulse optimization

Based on verification results (detailed in the next sec-

tion) a second study was devised to investigate the optimal

weighting function p0(t) for the transmitted signal (7) using

the first and second harmonics. Simulated waveforms were

defined in the frequency domain over a specified bandwidth

with cutoff frequencies smoothed by a Butterworth filter.7,21

The slope of the cutoff, the bandwidth, and the relative am-

plitude difference between the fundamental and second har-

monic bands were separately considered as independent

variables. The cutoff slope was varied by changing the order

n of the filter between n¼ 1, and n¼ 20. As the Butterworth

response gain is monotonically decreasing, it produces no

ripples and at lower orders resembles a slightly flattened

Gaussian-like signal. At higher orders the cutoff becomes

sharper and approximates a square-wave-like signal. Band-

width was varied from 10% to 120% of the fundamental cen-

ter frequency. The second harmonic peak amplitude was

varied between 10% and 100% of the fundamental.

Dependency on the bandwidth of the second harmonic

relative to the fundamental was also considered. In an ideal-

ized situation, the fundamental would produce a second har-

monic bandwidth twice the fundamental. However, as the

rate of increase of nonlinear-induced harmonics grows with

the square of the frequency, and as higher harmonics are

generally subject to measurably higher attenuation than the

fundamental, the optimization was also performed with a

band pass filter applied to the second harmonic.

Using the fundamental band as a control for the extended

bandwidth compression, and using the first and second har-

monics, it was observed that the minimum full-width-at-half-

maximum (FWHM) as a percentage of the control was inver-

sely proportional to bandwidth, whereas minimization of the

peaks occurred in the region xc � xb (Fig. 5), with the pre-

cise minimum dependent upon the relative amplitude of the

second harmonic and the order number of the filter. Based on

the criteria of (i) minimizing secondary peaks and (ii) mini-

mizing the FWHM of the main peak, a filter of order n¼ 10

was selected, representing the intermittent range between a

Gauss-like signal (n¼ 1), which optimized the former crite-

rion, and a square-wave-like signal (n	 20), which optimized

the latter. For the case of underwater nearly elastic scatter-

ing—i.e., the configuration being tested here—a 66% band-

width was selected. Filtering of the two harmonic

bandwidths—i.e., bandwidths that might be expected in a

more attenuating environment—resulted in further minimiza-

tion of sidelobes, but a reduced difference in the FWHM,

compared to a single band’s signal. In such cases, transmis-

sion bandwidths near 100% were found to be nearly optimal.

The 0.1 mm diameter three wire phantom was again

used to evaluate the signals, but with a transducer (25 mm

FIG. 5. (Color online) Simulation results for (left) minimization of the secondary peaks, shown for the case when the second harmonic bandwidth is twice the

first. (right) Minimization of the FWHM for the same case.
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diameter, f-number 4, xc¼ 2p� 2.25 MHz, Type A304s,

Panametrics, Waltham, MA) and receiver (6.4 mm diameter,

planar, xc¼ 2p� 5.0 MHz, Type A310S, Panametrics, Wal-

tham, MA) affixed in a backscattering configuration (Fig. 4).

Although the receiving transducer’s bandwith was limited

compared to the broadband receiver used in side scattering,

the configuration allowed measurement in a configuration

more likely to be encountered in medical and other diagnos-

tic use. A pulser receiver was used to produce reference

pulses (JSR DPR 35, JSR-Imaginant, Pittsford, NY). All

other apparatus were identical to the experimental setup

described previously. Processing was performed with the

algorithm used in previous experiments.

Six transmission signals were tested (Fig. 6): Two stepped

linear chirps PChirp (x0¼ 2p� 1.67 MHz and x1 ¼ 2p� 3.33

MHz at 66% and x¼ 2p� 1.25 MHz and x1¼ 2p� 3.75

MHz 100% bandwidth), two modified chirps PM determined

by the optimization (66% and 100% bandwidth), and two

modified chirps that were further corrected PCM using the

modulus of the source-receiver-paired impulse response Pir,
19

PCM xð Þ ¼ PM= Pirj j: (17)

The impulse response was determined from an impulsive

signal using the aforementioned Panametrics pulser receiver

(< 10 ns) reflected from a planar steel target.

IV. RESULTS

A. Verification

Upon compression, the received waveform was com-

pared with compressed fundamental and second harmonic

signals. The FWHM size, position, and variation in peak in-

tensity were recorded for each case. When the center wire

was greater than 1 mm from the first wire, three peaks were

clearly distinguishable in all compression schemes. At 1 mm

separation three distinguishable peaks were evident in all

methods except the first harmonic compression, where the

first two peaks were partially overlapping. Figure 7 shows an

example of the compressed, received waveform consisting

of the 0.17 mm diameter nylon with the center wire 1 mm

from the first. The compressed first harmonic, second har-

monic, extended signal using the firstþ second harmonics,

and extended signal using the firstþ secondþ third harmon-

ics are shown. Figure 8 shows a similar plot, but with the

center wire now moved to 0.5 mm from the first. At this dis-

tance, only the extended bandwidth signals were able to

resolve the first two objects. Similar behavior was observed

in three of the four measurement configurations studied. In

one case (0.1 mm wire in the far field), partially overlapping

signals were still visible for the first harmonic and second

harmonic compression. Cumulative results, including all

positions of the center wire are summarized in Table I.

Results indicate a reduced FWHM in all cases compared to

first harmonic and second harmonic compression.

In measurements using the 0.17 mm wire, a substantial

reduction in the third wire’s signal amplitude was observed.

This reduction is believed to result from receiver positioning.

Although care was taken to align the detector, the assumption

that the wires are equidistant from its surface is an approxima-

tion. Integration of the scattered signal over the surface of the

receiver is believed to be a significant cause of the variation

observed in signal amplitude. This variation may also be due,

in part, to the directionality of scattering from the relatively

thick 0.17 mm wires. This variation is detectable in the uncom-

pressed as well as compressed signals, and there is a strong

bias between variation of the first and second harmonic signals.

FIG. 6. (a) Impulse response of the transducer used for backscatter meas-

urements. A linear chirp (b) is compared with a modified shaded chirp (c)

created in the frequency domain and (d) a shaded chirp further modified to

compensate for the transducer response. Waveforms here are for the 100%

bandwidth case.

FIG. 7. Compressed signals scattered from three wires, when the second

and wires are situated 1 and 5 mm from the first, respectively. Standard first

(a) and second (b) harmonic compression are compared with the extended

and amplified signals using two harmonics (c) and three harmonics (d).
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B. SNR

It was observed that the SNR of the compressed and

amplified signal was closely dependent upon the SNR of the

second harmonic. At lower amplitudes the ultrasound field

was nearly linear and thus the second harmonic signal’s

SNR fell below 0 dB (Fig. 9).

The SNR was significantly improved when the extended

bandwidth method was used, but without amplification. It

was apparent from this result that amplification of the second

harmonic also resulted in amplification of signal noise.

These differences between the amplified and unamplified

signals were particularly evident when the second harmonic

signal was low.

At all voltage inputs, the resulting compressed first har-

monic was clearly detectable. As indicated in Fig. 9, a first

harmonic signal of significant amplitude was reconstructed,

even when the raw signal’s SNR was approaching the noise

level (Vin¼ 5 mV, SNR first¼ 5.4 dB, SNR raw signals

¼ 0.66 and 1.5 dB).

C. Pulse optimization

Modified chirp signals formed in the frequency domain

were found to decrease the FWHM and increase the maxi-

mum peak-to-sidelobe ratio compared to the uncorrected

chirp signal. Additional correction for the transducer’s

impulse response further improved both parameters. The net

effects of this improvement are evident in the signal’s com-

pressed waveform shown in Fig. 10.

FIG. 8. Compressed signals scattered from three wires, when the second and

third wires are situated 1 and 5 mm from the first respectively. Standard first

(a) and second (b) harmonic compression are compared with the extended

and amplified signals using two harmonics (c) and three harmonics (d).

TABLE I. Summary of FWHM measurements using first harmonic compression, second harmonic compression, extended bandwidth compression with two

harmonics, extended bandwidth compression with two harmonics plus uplifting (amplification) of the second harmonic, and extended bandwidth compression

with three harmonics plus uplifting of the second and third harmonics.

0.1 mm diameter steel, z¼ 192 mm

Mean

FWHM (mm) 6D (mm) 0.1 mm diameter Steel, z¼ 252 mm

Mean

FWHM (mm) 6D (mm)

First harmonic 0.905 0.42 First harmonic 0.876 0.28

Second harmonic 0.887 0.49 Second harmonic 0.822 0.30

First and second extended 0.531 0.29 First and second extended 0.609 0.26

First and second extended, uplifting 0.434 0.29 First and second extended, uplifting 0.493 0.21

First, second, and third extended, uplifting 0.367 0.25 First, second, and third extended, uplifting 0.360 0.13

0.17 mm diameter Nylon, z¼ 143 mm

Mean

FWHM (mm) 6 D (mm) 0.17 mm diameter Nylon, z¼ 252 mm

Mean

FWHM (mm) 6 D (mm)

First harmonic 0.975 0.55 First harmonic 0.981 0.34

Second harmonic 0.631 0.56 Second harmonic 0.779 0.32

First and second extended 0.776 0.31 First and second extended 0.682 0.17

First and second extended, uplifting 0.585 0.29 First and second extended, uplifting 0.393 0.22

First, second, and third extended, uplifting 0.472 0.20 First, second, and third extended, uplifting 0.430 0.26

FIG. 9. The extension method’s SNR (squares) closely follows that of the

second harmonic signal (circles), and is significantly lower than when the

amplification step is omitted (triangles). SNR of the first harmonic compres-

sion (diamonds) is appreciable even when the pre-compression SNR

approaches 0 dB.
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Using a 66% bandwidth, the mean compressed FWHM

was 0.51 mm for the chirp, 0.48 mm for the modified chirp,

and 0.42 mm for the modified and corrected chirp. The peak-

to-sidelobe ratio was 3.2 for the chirp, and 6.1 for both the

modified chirp, and the modified and corrected chirp.

Compared to the 66% bandwidth, the 100% bandwidth

was observed to be less than optimal, as predicted for the

present low-attenuation conditions. The mean FWHM meas-

urements yielded the following: chirp, 0.46 mm; modified

chirp 0.49 mm; modified and corrected, 0.41 mm. The peak-

to-sidelobe ratios were chirp, 4.6; modified chirp 5.1; modi-

fied and corrected, 5.3.

V. DISCUSSION

The primary benefit of pulse compression is the substan-

tial increase in total energy that a transmitted signal can con-

tain, and at the same time not exceeding the transmission

capabilities of a given transducer, and without exceeding

potential regulatory limits on ultrasound intensity or me-

chanical index. A wide range of medical, testing, and under-

water applications can, and do, benefit from such techniques.

The present work has proposed a method for further

compressing a signal by simultaneously utilizing its funda-

mental signal and the second harmonic generated from sec-

ond order nonlinear propagation. In previous investigations

the fundamental and the second harmonic have been sepa-

rately utilized and the presence of more than one harmonic

component has generally been treated as a source of artifacts.

In contrast, the extended bandwidth approach combines

harmonics. Although combining bands does not automati-

cally imply enhanced compression, proper choice of trans-

mission bandwidth can result in cancellation between the

signal envelope (or envelopes) and the secondary peaks of

the carrier signal. The key to successful implementation is

the quantification and subsequent correction of phase differ-

ences in each band. This correction is performed by phase

analysis of a reference signal performed a priori. The result-

ing weighting factor provides a modified frequency domain

signal, which resembles that of a compressed and propagated

pulse whose bandwidth is extended relative to the transmis-

sion signal.

Signals can be further compressed by adjusting the rela-

tive amplitude of the higher harmonics, as applied in situ.

Although other approaches may prove more robust, the pres-

ent algorithm selected an amplification factor based on mini-

mizing the total number of peaks in the signal. Using this

method under nearly linear conditions and in the presence of

noise indicated the benefits of the amplification step are

diminished for noisy or small harmonics.

The approach was tested using three scattering sources;

two overlapping and one reference. Working under low

noise conditions, significant reduction in signal FWHM was

observed, as compared to standard linear and second har-

monic coded excitation. For the extended bandwidth

approach, relative to first harmonic pulse compression

(mean: 0.934 6 0.40 mm), cumulative results of four experi-

mental configurations found a 49% overall mean reduction

in pulse width when using two combined harmonic bands

(mean: 0.476 6 0.25 mm) and 56% when using three har-

monics (mean: 0.409 6 0.24 mm). Relative to second har-

monic pulse compression (mean: 0.780 6 0.42 mm),

reductions of 39% using two harmonics and 48% using three

harmonics were observed.

Provided that there is sufficient signal strength, the

approach expected to be applicable to an arbitrary number of

harmonics. Practical application would likely require a spe-

cialized array, as well as a data acquisition scheme capable

of a sampling rate sufficient to acquire multiple channels up

to the desired harmonic band. Moreover, dedicated separate

FIG. 10. Compressed echoes from

three 0.1 mm wires placed 0.5 and 5

mm from the first. Chirp input sig-

nals (top) modified in the frequency

domain (middle) increased compres-

sion, particularly when the trans-

ducer’s response was accounted for

(bottom).
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transmitted and received elements are likely, in order to opti-

mize the output elements for power, and the received ele-

ments for bandwidth. Although not studied here, the ability

to distinguish signal from artifact using a large dynamic

imaging range could also prove to be a limit on certain appli-

cations. The present study was limited to the case of strong

scatters.

A three-harmonic case was demonstrated here, showing

enhanced waveform compression despite the third harmon-

ic’s relatively low amplitude. Although limited by the pres-

ent experimental setup, this preliminary result motivates

further investigation into ultraharmonic compression.

Although not necessarily relevant to medical use, other

potential applications (e.g., air-coupled ultrasound) may ben-

efit from such work.

Examination of driving signals for the approach predicts

that the precise optimal transmission signal will depend on

the attenuation of the transmission and the strength of the

nonlinearity. However, even if these values cannot be esti-

mated with high precision, a sizable region exists (Fig. 5),

where use of the extended bandwidth approach would still

improve compression. Presently, optimal transmission band-

widths ranging between 66% and 120% were recorded for the

various parameters studied here. For most cases no improve-

ment or signal degradation was observed for bandwidths

greater than 100%, indicating that, for the present approach,

the maxim that more bandwidth is better does not apply.

VI. CONCLUSION

Coded excitation is commonly performed with the idea

of increasing SNR at the expense of temporal (axial) resolu-

tion. However, the extended bandwidth method presented

here has the potential to both increase SNR and also increase

resolution relative to use the fundamental or second har-

monic alone. In this preliminary study the method was found

to have superior compression compared with coded excita-

tion about the fundamental bandwidth, as well as second har-

monic coded excitation. Future work will concentrate on

experimental verification as well as improved methods for

optimizing parameters in the matching filter.
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