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Abstract
An approach to diffraction tomography is investigated for two-dimensional
image reconstruction of objects surrounded by an arbitrarily-shaped curve of
sources and receivers. Based on the integral theorem of Helmholtz and
Kirchhoff, the approach relies upon a valid choice of the Green’s functions for
selected conditions along the (possibly-irregular) boundary. This allows field
projections from the receivers to an arbitrary external location. When per-
formed over all source locations, it will be shown that the field caused by a
hypothetical source at this external location is also known along the boundary.
This field can then be projected to new external points that may serve as a
virtual receiver. Under such a reformation, data may be put in a form suitable
for image construction by synthetic aperture methods. Foundations of the
approach are shown, followed by a mapping technique optimized for the
approach. Examples formed from synthetic data are provided.

Keywords: diffraction tomography, boundary value problems, acoustic
imaging

(Some figures may appear in colour only in the online journal)

1. Introduction

Although diffraction tomography has been described in various generalized forms [1–4],
reconstructions are typically performed along separable boundaries [5–7], i.e. data are
acquired over a curve or surface formed by holding constant one or more dimension of a
given coordinate system. This condition need not be restrictive, provided such a surface (or
line, in 2D) can be accessed. However, for a large class of problems, placement of both
transmitters and receivers is limited by reachable geometry and coupling ability. Such
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limitations are particularly prevalent in acoustics where the boundary of the structure being
investigated is often irregularly-shaped. Some examples would include the human body,
biologic samples, and many geologic structures.

A method for reconstructing images using an arbitrary configuration of transmitters and
receivers was described in pioneering work by Devany and Beylkin [8], who demonstrated
such reconstruction can be performed under the key condition that the local radius of cur-
vature is much larger than a wavelength. Gelius also described a general technique valid for
curved acquisitions, based on a paraxial approximation [9]. The present work seeks to build
on the arbitrary approach by introducing an alternative method that does not require explicit
restrictions on curvature. The method is based on the integral theorem of Helmholtz and
Kirchhoff [10] which, with care, can be applied to quite general shapes. The current approach
applies Dirichlet conditions to the irregular boundary, such that successful implementation is
dependent upon the choice and validity of the particular Green’s functions selected to satisfy
conditions.

Given a sufficiently large internal region, it will be shown that selection of the Green’s
functions necessary to satisfy boundary conditions can be straightforward. Examples con-
sidered here in section 3 are limited to such a case. However, the formulation itself is not
restrictive of size, and for smaller regions, boundary element [11–14], null-field [15, 16], or
series solutions [17] could be used.

The scope of the present work is further limited to the two-dimensional inverse problem
formulated under the assumptions of the Born approximation [18] within the scattering
region. Sources and receivers will be located on an identical closed loop boundary sur-
rounding a scattering region. Once selected, Green’s functions and their normal derivatives
along the measurement curve are used to project the field into the exterior region. A line of
virtual sources is first formed through successive projections. Then, by argument of reci-
procity, a line of virtual receivers parallel to the sources is formed, putting the data in a form
suitable for well-established diffraction tomography methods [18].

In the reconstruction performed here, some variation in traditional approaches is taken in
order to better exploit information available from having sources/receivers that entirely sur-
round the object. Since the angle of orientation of the virtual source/receiver planes is
arbitrary, multiple sets of virtual arrays may be formed from a single acquisition, allowing
construction of spatial frequency components out to a radius equal to twice that of the
imaging wavenumber. A k-space mapping scheme is introduced to minimize redundancy
while maximizing the available information during this construction. Foundations of the
approach are outlined, followed by the presentation of numeric examples.

2. Theory

2.1. Tomographic method

To begin, a continuously-radiating monochromatic point source at position rS is considered.
The radiated field is scattered by a spatially-varying but localized inhomogeneous region

′q r( ) under the assumption that the Born approximation holds everywhere within this region.
This field is measured by a point receiver located at rR. Placing both rS and rR outside the
scattering region, the acoustic pressure, p, at the receiver can be represented by

∫ ′ ′ ′ ′= ( ) ( )p q g gr r r r r r r r( ; ) ( ) d , (1)R S n S n R
n
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where the source amplitude is normalized and n is the dimensionality of the problem [11]. By
convention, the vector following the semicolon in p represents the source location or
scattering origin. Functions gn are the associated Green’s functions of the Helmholtz equation

δ ′+ = − g k g r r( ). (2)n
2

n 0
2

n

It will be desirable to write the Green’s functions in an integral form, which can be
achieved by first taking the Fourier transforms of both sides of (2), producing an equation of
the form

′ ′ =
− ′

− ′⋅ ′
G

k
k r

k
˜ ( ; )

e
. (3)

k ri

0
2 2

Working in Cartesian coordinates, the inverse Fourier transform of (3) with respect to ′kz

gives

′ ′ = = − ′ − ′
′ ′

′

− ′ − ′ − ′

( )G k k z
k

k k k k, ,
i

2

e e e
; (4)x y z

k x k y k z z

z
z x y

i i i
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and though the argument could continue in three dimensions, most practical imaging
configurations concern two-dimensions, so that here ′ky will be set to zero. The inverse
transform with respect to ′kx can then be expressed as

∫π
′ = ′′

− ′
− ′g

k
kr r( )

i

4

e
e d . (5)

k z z

z

k x x
x

i
i ( )

z
x

To proceed, the scattering region is confined to < <z z0 ,R and rS is restricted to ⩽z 0S ,
as shown in figure 1. Making use of (5) to rewrite the Green’s functions in (1), the equation
becomes

Figure 1. Configuration of the problem showing scattering region q located between a
line of sources along =z zS and receivers =z zR.

Inverse Problems 30 (2014) 125010 G T Clement

3



∫ ′ ′=
−

′− ′
− ′

− ′
⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

( )p q
k k

k kr r r r( ; ) ( )
e

e e
e

e e d d d . (6)( )
k x

k z z k x
k x

k z z k x
R S

i

S

i s i
i

R

i i
R S

2
x

z

z x
x

z

z x
x x

S S
s S

R
R R R R

Rearranging terms and changing the order of integration puts (6) in the form of a two
dimensional Fourier transform with respect to ′r

∫ ∫ ′ ′=

×

− −
− − ′ − − ′⎡
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Solving the integral within the bracket yields

∫=
− ⋅ − ⋅( )

p
Q

k k
k kr r

k k
( ; ) e e d d , (8)k r k r

R S
R S

S R

i ( ) i
S R

z z
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S S R R

which takes on the form of an inverse Fourier integral. Thus, if p is known along some line xS

at an arbitrary constant zS ( ⩽z 0S ) for every point xR along an arbitrary constant zR ( ⩾z 0R ),

the Fourier transform of the resulting function, p x x( ; )
z z

R S
,R S

can be equated with the

integrand of the right hand side. Synthetic aperture tomographic approaches are based on
direct measurement of p x x( ; )R S to perform this inversion. Accessibility, however, may make
it impossible to acquire data over such lines. Moreover, impractically-long lengths of sources
xS and receivers xR may be required in order to achieve an accurate reconstruction. To
overcome such restrictions, a more general case is now considered where signals may be
acquired over any arbitrary, continuous, closed surface surrounding the inhomogeneous
region.

2.2. Projection to separable boundaries

The integral theorem of Helmholtz and Kirchhoff in two dimensions [10] guarantees that for
any point rR located within the source-free homogeneous area A enclosed by a curve L

Figure 2. Measurement in the scattering region q acquired with both sources and
receivers located on L′. An interior Green’s function, F, is shown at an appropriate
point, given exterior Green’s function G. If the diameter of q becomes small relative to
G, the method can be replaced by a series or numeric method. The measured signal is
projected to S, producing a virtual array.
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∮π
= ′ ′ − ′ ′ ⋅ ′ ′ ( )( ) ( )p g p p g lr r r r r r r n̂( )

1

2
( ) ( ) d , (9)

L
R R R

where the normal vector ′n̂ is taken outward from the surface of integration and ′p r( ) is the
total field pressure on the curve. Selecting a curve that partially borders the scattering region,
as illustrated in figure 2, shows the possibility to solve for p r( )R over a finite line inscribed
within the area bounded by L. If the medium is homogeneous outside the scattering region,
the boundary away from the scattering region may be extended to infinity, reducing the
integration bounds to L′, a section of the curve L surrounding the scattering region. This
‘medium’ need not be a physical one, as long as measurements on L can be acquired without
interference from the exterior region. For an incident field created by a point source located at
r, the resulting pressure at rR gives:

∫π
′= ′ ∂ ′

∂ ′
−

∂ ′
′

⋅ ′ ′
′

⎛
⎝
⎜⎜

⎞
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1

2

( ; )
( ; )

d
d , (10)

L
R R

R

where ∂ ∂ ′n/ is the normal derivative orthogonal to L′. A direct solution to this over-specified
equation may be obtained, provided both the pressure and its normal derivative are known on
the boundary and that care is also taken to avoid problems regarding non-uniqueness of the
solution [12, 17, 19]. More typically pressure and its derivative are not simultaneously known
and numeric boundary methods [14] must be used to find the unknown quantity.

The present goal is to maintain validity, even for measurement around complex boundary
shapes. Here a unique solution to (10) is sought by applying Dirichlet conditions, such that

′g r r( )R = 0 for ′r on L. This requires an appropriate choice of Green’s function, which is
selected to be of the form

= +( )g g fr r r r r r( , ) ( , ), (11)R 0 R R

where the first term is the outgoing Green’s function of the Helmholtz equation. Clearly, in
order for boundary conditions to be met ′ ′= −f gr r r r( , ) ( )R 0 R on L. Noting that the function
f must itself be a solution to the homogeneous Helmholtz equation, the function must also
satisfy Green’s second theorem [20], allowing (11) to be written
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′
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Substituting = −f g g0 into the integrand of (12) and allowing r to approach a point on
the boundary, → ′ ≃g r r r( , ) 0R 0 yields a Fredholm integral of the first-kind

∫π
′ + ′ ′

∂ ′
∂ ′

⋅ ′ ′ =
′′ →

⎪ ⎪

⎪ ⎪

⎧
⎨
⎩

⎫
⎬
⎭( ) ( )

( )
g g

g

n
lr r r r

r r
n̂

1

2

,
d 0, (13)

L r r0 R 0 0 0
R

0

amenable to inversion [21] in order to provide the unknown normal derivative at position ′r0.
Assuming, for now, that this normal derivative can indeed be determined by inversion (or
otherwise approximated) (10), simplifies to

∫π
= ′ ′ ′

′
( )p p K lr r r r r r( ; )

1

4
( ; ) , d , (14)

L
R R
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where on the boundary

′
′

′=
∂

∂ ′
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⎪ ⎪
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⎫
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n̂,

,
. (15)R

R

Since (15) is dependent only on rR and the boundary geometry, it is notably independent
of source location. Thus once determined for a given external location, the same function is
applicable to any source point, or array of points, on the boundary.

A solution along the line of constant zR can now be obtained for a continuum of points
located on S.

By reciprocity, a point source radiating from a given location o n S would result in a
pressure p r r( ; )R on L (figure 3). Renaming →r rR S

∫π
′ ′= ′

′
( )p x p K lr r r r r( ; )

1

4
( ; ) , d , (16)

z L
S S

s

giving the field on L, were a source to exist at a point on S. By confining S to the region
⩽z 0S and applying (13) once again for a closed curve that fully circumscribes a line R

parallel to S confined to ⩾z zqR max
yields

∫π
= ″ ″ ⋅ ′ ″

″
( ) ( )p x x p K lr r r r n̂( ; )

1

4
; , d . (17)

z z L
R S

,
S S

R S

Finally, combining (16) and (17) into a single equation gives

∫π
= ′ ″ ″ ′ ′ ″

″′
( ) ( )p x x p K K l lr r r r r r( ; )

1

16
( ; ) , , d d , (18)

z z L L
R S

, ,
R S

R S

as illustrated in figure 4.
By (18) it is seen that an array of point sources and receivers assembled around an

identical closed curve surrounding a scattering region can be used to measure the pressure at
points around the curve due to each source, thereby forming the solution ′ ″p r r( ; ) over the
curve points ′r and ″r . This solution is used to produce the virtual solution p r r( ; )R S that

Figure 3.Modulus of the projected pressure along S as a function of source location on
L. Values recorded at a fixed location on S (boxed) are equated to the pressure
experienced on L from a hypothetical source at this location.
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would exist were sources and receivers to be located on R and S, respectively (figure 4), with
lines on L arbitrarily extending to and from infinity normal to the z-axis, thus avoid inter-
section with zS and zR.

It is again noted that the space comprising R and S need not be a physical space, but
rather may be regarded as a mapping of p for the purpose of placing the data in the form of the
solution of (8), making them suitable for reconstruction. It is further noted that the choice of
mapping to a linear boundary could, in essence, be replaced by a mapping to a circular
geometry to be reconstructed [22–25]. The current choice of Cartesian symmetry is based on
the reconstruction method described in the next section.

2.3. Reconstruction

Equating the Fourier transform of (18) with respect to xR and xS to the integrand of (8), leads
to

− = −( )( )Q P k k k kk k , e e . (19)k z k z
R S R S S R

i i
x x z z

z zS S R R

Reconstruction entails the nonlinear mapping from the plane k k( , )R Sx x to the Cartesian
plane k k( , )x z over which the object’s spatial Fourier transform is specified. This mapping
requires careful consideration of the resolution and range required in each space in order to
produce an image of a given resolution. For clarity, the coordinates of the transform of P are
denoted as the ‘KRS’ space k k( , )R Sx x , whereas the Fourier transform of the object, q, is
indicated as the ‘Kq’ space k k( , )x z . A number of works have considered the optimal means to
perform this mapping [26, 27], which is described by

= −

= − − −

k k k

k k k k k

,

, (20)

x

z

R S

0
2

R
2

0
2

S
2

x x

x x

and whose key features are illustrated in figure 5. It is noted that kR x = kSx maps to the origin,
while kR x =−kSx maps to =k 0z over the span −2k0 to 2k0, indicating the ability to
conceivably reconstruct Kq over a diameter of twice that of KRS.

While algorithms typically map points directly from KRS to Kq, followed by interpolation
to a linear grid, the present algorithm elects to algebraically solve for kR x and kSx in terms of
kx and kz, which has solutions

Figure 4. The virtual array at S is then used in combination with data on L′ to produce a
virtual array of receivers along line R.
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Both solutions (±) of kR x are relevant, with the physical solution dependent upon the
particular location in Kq. When >k kxR x (kSx > 0) the additive solution (+) is used for
quadrants II and IV, the subtractive solution (−) for quadrant III, and no solution exists for
quadrant IV. When <k kxR x (kSx < 0) the subtractive solution is used in quadrants I and III,
the additive solution in quadrant IV, and no solution exists in quadrant II. By pre-specifying
the area and spatial resolution of the image to be constructed. The desired points over a
regular grid in Kq can be mapped using (21) to provide the desired points in KRS. Once
specified, the value Q for a given point can be determined using (19). Finally, Q can be
inverse Fourier transformed to produce an image. Conversely, determining Q from (20) maps
values from KRS onto a nonlinear array of points in Kq that is highly oversampled near the
origin. This requires interpolation to a regularly spaced grid, which can both decrease pro-
cessing efficiency and reduce accuracy [27, 28]. An example comparing (20) and (21) is
provided in section 3.3.

3. Numerical examples

3.1. Algorithm

To demonstrate the imaging process, a discrete approximation to the methods of section 2 is
presented. Calculations are implemented in Matlab (R2010a, Mathworks) starting from a
measured acoustic signal over an array of point-like sources/receivers on a closed curve that
surrounds an ROI. The absolute positions of the points are assumed known. Vectors normal to

Figure 5. Illustration of the spatial relation between P k k( , )R S and Q k k( , )z x . Points in
the smaller circularly-inscribed region of Q (right) map to the points inside the
inscribed region of P (left), while the larger circularly-inscribed region (right) maps
over all point shown in P. Q shows the space filled using two orthogonal, filtered (thus
non-circular) pairs of P.
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the curve are determined by taking the cross product between tangential vectors (determined
by differences between neighboring position vectors) and a vector normal to the imaging
plane. One source is radiated and the resulting scattered field is recorded over all receivers.
The process is repeated until all points have served as a source.

Green’s functions are next determined to associate points on the curve to those along a
virtual line source at =

ϕ
x z( , 0)s , where ϕ denotes a relative rotation angle. Gradients of the

Green’s functions normal to the measurement curve are similarly calculated and stored. In
practice, these functions can be calculated a priori using (11) and stored in RAM for more
efficient implementation.

With these values, signals are projected to a line along z= S by a discrete approximation
to (14). By repeating the projections over all source locations, the 2D matrix ′

=
p x r( ; )

z
s

0S

is

formed. By acoustic reciprocity, a column of the transpose of this matrix can be equated to the
field on the curved surface ′r that results from a virtual source at point xs, as illustrated in
figure 3. This new field, ′p r x( ; )s can then be projected to a new line, z=R using (16) and

(17). This process is repeated over all xS to form the matrix
=

=
p x x( ; ) .

z

z Z
R S

0S

R

Based on the size of the VOI, the desired spatial resolution, and the imaging frequency,
the algorithm determines the necessary grid sizing and the number of virtual source/receiver
rotation angles necessary to construct Kq. As there is significant redundancy between data
from any two rotation angles, this procedure utilizes only kR x and kSx values that contribute
uniquely to the uniform grid of Kq described by (21). For example, a relatively simple and
low resolution reconstruction might require only a single pair of virtual sources/receivers. If a
single pair is deemed insufficient, missing values are next sought from a second virtual pair
rotated π/2 relative to the first. This is followed, as necessary, by additional pairs rotated ±π/4,
then four additional pairs rotated ±π/8 and ±3π/8, etc, until the preselected area of Kq is
obtained to within a prescribed resolution.

Since only specific and nonlinearly-spaced values of kR x and kSx are required by (21), it is
neither necessary nor advantageous to calculate full Fourier transforms of p x x( ; )R Sx . Rather,
the values pertaining to a specific location k k( , )x z are calculated directly in terms of x x( , )R Sx

by discrete formation of (19) in terms of the Fourier integral:

∫=

×
−∞

∞
− −

−

⎡
⎣⎢

⎤
⎦⎥( )( ) ( )Q k k k k k k p x x x x

k k

, , , ( , )e e d d

e e . (22)

x S z
k x k x

k z k z

R R S R S
i i

S R

S R
i i

x x x x x
x x

z z
z z

R R S S

S S R R

In other words, the integral is solved only for values of k k( , )R Sx x pre-specified by (21), so
that only the minimum necessary number of values are calculated, decreasing both the
number of required calculations and the required memory. For each rotation, only non-
overlapping regions are calculated, so that for each rotation the number of necessary values
decreases.

As (22) is performed in lieu of the Fourier transform (FFT)—inarguably a remarkably
efficient operation—the benefit of this process may at first be unclear. Indeed, a discrete FFT
of can generally be calculated more rapidly than a discretized (22), even when a relatively
small number of values k k( , )R Sx x are required [29]. A space of p x x( ; )R Sx discretized grid of

= ×N N Nk R S points could be transformed by FFT in a time proportional to Nk operations.
Conversely, a discretized Fourier integral would require the same number of operations just to
calculate a single point k k( , )R Sx x . The substantial advantages of the proposed method, rather,
come from avoiding the subsequent mapping and interpolation required of the forward
approach. Selecting exclusively the NO discrete points that map to the grid k k( , )x z , the
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mappable space is complete after ×π N N
4 O k operations. Conversely, the same calculation

determined from an FFT and forward mapping results in a highly oversampled space near the
origin that then requires interpolation.

A numeric and visual comparison between the two approaches is given in section 3.5.
For this example, a common efficient interpolation approach making use of Delaunay tri-
angulation is used. If well implemented, the triangulation might be performed in as few as

( )N Nlog0 0 operations [30]. This step is then followed by interpolating the values of each
point mapped from Nk. The total expected time would then be that of approximately

+ +( )N N N N N2 log 3k O O O k operations.
As high spatial frequency components of the signals in KRS tend to be both decreased in

magnitude and increased in noise content, lowpass filtering is used. Qualitatively the effect of
this filtering is to transform the circular regions in Kq into lens-shaped geometries. In
implementing (22) an adjustable Butterworth lowpass filter is set (here, to a default value of
0.9k0) to remove high-frequency noise. The filtered signal is finally inverse-transformed to
produce an image.

3.2. Parameters

The parameters for setting spatial resolution and image size may be elucidated by examining
Kq. Selecting some desired image resolution, δr in both directions, Nyquist criteria sets a
requisite maximum (spatial) frequency of π δ=k r/NYQ for kx and kz. Conversely, length, L,
and height H, of the imaging region set the resolution in Kq at Δ π Δ π⩽ ⩽k L k H/ , /x z . In the
idealized case where Q(k) from (19) is fully known up to kNYQ at the required resolution in
both directions, total image recovery with the selected spatial resolution is possible. However,
this would also require that the values of all points mapped from KRS onto Kq are known.

Examining (20), it can be seen that an area close-to and centered-about the origin in Kq

maps to points over the full range of KRS (figure 5). Thus, even an image consisting of
relatively low spatial frequencies still requires knowledge of the higher spatial components of
KRS. The equation further shows that both kR x and kSx must be less than or equal to k0 for kz to
be real, confining the regions of possibly-known Kq.

The resolution requirement in KRS can be determined by taking the partial differential of
(21)

Δ Δ Δ

Δ Δ Δ

=
∂
∂

+
∂
∂

=
∂
∂

+
∂
∂

k
k

k
k

k

k
k

k
k

k
k

k

k
k

,

, (23)

x
x

z
z

x
x

z
z

R
R R

S
S S

x

x x

x

x x

such that the constant resolution in Kq, is nonlinear in KRS.
To complete the space Kq, one or more additional acquisitions can be performed along

axes rotated relative to the initial acquisition. For this purpose, the present approach proves
advantageous: Since sources and receivers surround the target, the relative angle of the virtual
source/receiver lines is arbitrary, and any number of projections may be performed at dif-
ferent rotation angles. Using a continuum of rotation angles would ultimately permit Kq to be
constructed within a circular region of radius 2k0, centered about the origin.
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3.3. Scattering phantoms

Numeric phantoms were used to illustrate the approach as well as to verify the algorithm.
These phantoms consisted of a set of two-dimensional maps that provided speed of sound as a
function of position for a scattering object situated in an otherwise uniform medium. The
boundaries of two Shepp–Logan phantoms [31] were modified to provide significant local
curvature (figure 6). In particular, appreciable concave features were added to the boundaries,
representing a known potentially-significant source of error for many exterior approa-
ches [32].

Distance and resolution phantoms were also utilized, which contained point and line
scatterers based on typical ultrasound resolution and distance test phantoms, e.g. [33]. Test
patterns contained two rows and two columns of crossing point-like scatteres, located at
regularly decreasing intervals (56 mm, 28 mm, 14 mm, 7 mm, 3.5 mm, 1.75 mm, and
0.88 mm) along each row/column, and two solid crossing lines. Based on a signal frequency
of 500 kHz and a background sound speed of 1500 m s−1 and scattering speed of 1550 m s−1,
three boundary shapes were considered, each selected to represent significant variation in
curve shape over the scale of several wavelengths (figure 7) and variable distance of the
scattering locations relative to the measurement surface, while remaining marginally large
enough to utilize the approach without the need for iterative representation of the Green’s
functions [17].

Simulations were limited to two virtual source/receiver pairs, covering the region in k-
space shown in figure 3. In this manner the case of three curves was considered representing
successively increased asymmetry. Vectors normal to the phantom boundary were determined
by calculating the cross product between a vector perpendicular to the imaging plane and the
vectors tangential to the curve, which were determined by differences between neighboring
position vectors.

3.4. Green’s functions

Success of the method is dependent on the proper choice of the function ′g r r( , )R and, more
directly, an accurate solution of (15); its normal derivative on the boundary. Despite a wide
range of boundary approaches, most methods require that either the boundary not deviate
significantly from a separable boundary, i.e. that the solution may be regarded separable [34],
or that impedance boundary conditions hold [11]. For the two dimensional cases considered
here, the boundary conditions are satisfied by the class of functions

θ θ′ = − = − ′ +( ) ( )f g kr r R R r r x̂ ẑ, ( ); cos sin (24)R 0 R

for any θ where ∉ AR . In the present two-dimensional examples, ′ ′= −g H kr r r r( | ) ( | |)0 R 0 R ,
the zero-order Hankel function of the first kind expressed as a function of wavenumber, k, and
spatial separation. It is noted that the function

′ ′ ′= − −( )( )f gr r r r r, 2 (25)R 0 R

satisfies the necessary conditions for many practically-encountered curves, and is considered
here for the distance and resolution phantoms described in section 3.3. In this case, the
solution to (15) on the boundary is formed by making use of the normal derivative

′
′
′

′∂
∂ ′

− =
−
−

−( ) ( )
n

g k k H kr r
r r

r r
r r (26)0 R

R

R
1 R

with the derivative of f calculated point-by-point over the boundary for a given r .R
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When the local radius of curvature approaches the size of the imaging wavelength, as is
the case for the modified Shepp–Logan phantoms, a more general representation becomes
necessary. This might be achieved by a number of boundary methods, and in the present case
the normal derivative on the boundary is determined by applying the extinction theorem
[19, 35, 36] in a manner identical to solving scattering of an external point source from a

Figure 6. Shepp–Logan phantom varied in sound speed (m s−1) with boundaries
modified to represent two cases of significant local curvature. Horizontal bars indicate
ten wavelengths.

Figure 7. Three curves defining the locations of sources and receivers used in the
examples, representing image regions with (a) two, (b) one and (c) zero axes of
symmetry.
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pressure release boundary. Making use of (15) and extending (12) to demand the exterior
greens function be zero everywhere on the interior, the two-dimensional case

∫π
′ ′ ′ = − − ∈

′
( )( )g K l H k qr r r r r r r

1

2
( ) , d , . (27)

L
0 R 0 R

A solution is obtained by establishing a system of integral equations formed by random
selection of a set of locations within q. Solutions are then obtained using a generalized
minimum residual method [37].

3.5. Simulations

For each simulated case, a field calculation was performed to simulate a radiating point source
on the boundary of the phantom. The resulting pressure and its normal derivative were
recorded at half-wavelength intervals along the exterior bounds of the object by discrete
approximation to (1) via Simpson’s composite rule. This process was repeated with the source
moved along the curve until a data grid of data was formed, so that the field on the boundary
due to source radiation at any location was known. Simulations entailed discrete calculation
of (1) using the two-dimensional Green’s functions. Pressure gradients were then determined
by applying the gradient operator to (1). Moving the operator inside the integral

∫ ′ ′ ′ ′= ( ) ( )p q g gr r r r r r r r( ; ) ( ) d , (28)R R S S R R
2

both ′g r r( )R and ′ g r r( )R R could be calculated a priori and stored for efficient
implementation. These values were used as input for the algorithm described in section 3.1.

In all simulations, virtual source and receiver lines were separated by 220 mm, each
consisting of 900 elements spanning a distance of 1000 mm (Δx = 1.11 mm). The first curve
(figure 7(a)) was 560 mm in circumference, and formed the bounds of a nearly-elliptic oval
with a long axis of 200 mm and a short axis of 150 mm. Source/receiver locations were
located at 0.97 mm intervals along the curve. The second curve (figure 7(b)) was egg-shaped,
560 mm in circumference, with a long axis of 200 mm and a short axis of 157 mm. Source/
receiver locations were placed at 0.6 mm intervals around the curve. The third curve

Figure 8. Image construction of the case shown in figure 6(a) (left), and the same image
overlain with the actual scattering locations (right).
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(figure 7(c)) was 655 mm in circumference, spanning distance of 253 mm on the Cartesian z-
axis and 158 mm on the Cartesian x-axis. Source/receivers were situated at 1.1 mm intervals
on the curve.

Calculations were performed in Matlab R2010a using Windows 7 64 bit operating sys-
tem. Hardware consisted of two quad-core E5-1620 3.6 GHz Xeon processors and 32 GB of
RAM. Images were formed over a 512 × 512 grid spanning a 200 mm× 200 mm ROI. Results
are displayed in figures 8–10. In all three of these marginal examples, very little spatial
distortion is observed over the span of the ROI, whereas the sub-wavelength scatterers are
seen to exhibit point-spreading of one to several millimeters. Particularly in the third case
(figure 10), signal strength is diminished and significant blurring can be observed. However,

Figure 9. Image construction of the case shown in figure 6(b) (left), and the same image
overlain with the actual scattering locations (right).

Figure 10. Image construction of the case shown in figure 6(c) (left), and the same
image overlain with the actual scattering locations (right).
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even in this case most features of the phantom are discernible, the exceptions being when the
point sources were very close to measurement plane. For the first phantom (figure 7), spacing
of 1.3 mm (∼1/2 wavelength) or greater was discernible. For the second (figure 8) and third
phantom (figure 9), spacing separation resolution was reduced, with spacing greater than
0.87 mm (∼1 wavelength) discernible. Image artifacts are present in the latter two cases, as
indicated in the figures.

Similar reconstructions of the modified Shepp–Logan phantom are shown in figures 11
and 12. Solutions in (27) were obtained in these cases using 4500 randomly-selected interior

Figure 11. Image construction of the phantom in figure 6(a). The left image was
reconstructed using the mapping described in section 3.1, while the right was formed
by FFT, mapping and interpolation. Bars indicate ten wavelengths.

Figure 12. Image construction of the phantom in figure 6(b). The left image was
reconstructed using the mapping described in section 3.1, while the right was formed
by FFT, mapping and interpolation. Bars indicate ten wavelengths.
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points from a uniform distribution. The Shepp–Logan phantoms were also utilized to examine
relative efficiency of the algebraic approach expressed in (21), as compared to direct fast
Fourier transformation (FFT) of the data into KRS, mapping onto Kq, and then interpolation.
The process time in implementing the FFT-based approach was observed to consistently
benchmark at 11–14 times greater than the process time recorded using the algorithm
described in section 3.1. A qualitative comparison of the reconstructed images is also pro-
vided in the figures.

4. Summary

The tomographic process may be briefly summarized as follows: starting from a closed curve
of arbitrarily-shaped sources and receivers, a solution to the exterior problem under Dirichlet
conditions is approximated, or otherwise numerically determined. Using this solution as the
Green’s function, received data is projected to a line exterior to the curve. This received and
projected data is next associated, by reciprocity, to the signal expected on the original curve
due to a virtual source on the external line. This new signal is further projected to a second
line, denoted as the ‘receiver,’ placed parallel-to and on opposite sides of the object, thus
reducing the problem to that of standard synthetic aperture diffraction tomography. Using
only the original received dataset, this process may be repeated an arbitrary number of times
at different angles.

This process was examined using two virtual source/receiver pairs formulated from three
different irregular curves at 500 kHz traveling through a medium comparable in sound speed
to the range of many fluids or tissues. In this marginal case, point-scatterers could be iden-
tified, with very little distortion over the span of the reconstruction, albeit with low image
contrast.

While this tomographic technique was specifically developed for application around
irregularly-shaped boundaries, the method may have utility regardless of boundary shape
in situations that would require sources and receivers to be placed over impractically-long
linear distances in order to reconstruct an image. A mapping scheme was also described that
was devised to optimize the construction in k-space by pre-selecting locations and associating
their values with points from transformed data. While the method may have application in a
number of areas in acoustics, our ongoing efforts are in applying a modified version of the
approach toward tomographic ultrasound imaging of the brain.
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