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Clinical applications of focused ultrasound—The brain
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Abstract
This paper provides a historic and contemporary overview of the use of focused ultrasound for treating brain disorders.
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Introduction

Since the inception of ultrasound as a therapeutic

tool, its potential to treat disorders throughout the

brain has been explored. The objective has been to

utilize ultrasound’s focusing ability to target precisely

within deep tissues, affecting only the interested

volume while leaving all other structures unaltered.

Unfortunately, ultrasound’s use in the brain has been

inhibited by the skull bone, as well as the inability to

target and monitor treatments.

In fact, for more than 50 years it was believed that

the attenuation and distortion caused by the

skull was so severe that it created an impenetrable

barrier, making transskull therapies impossible [1].

Contemporary work, however, has shown that

focusing through the intact skull is possible.

Furthermore, technological advancements have made

it practical, owing to the development of high-

powered transducer arrays and high-performance

computers to calculate the corrections necessary to

restore a focus in the brain.

Similarly, the ability to target and monitor the

deposition of ultrasound energy in the brain has

improved dramatically over the past half-century.

Radiological developments including X-ray com-

puted tomography (CT) followed by magnetic

resonance imaging (MRI) made millimeter precision

registration with brain structures possible.

This progression of improvements has led to the

present state of research, where non-invasive trans-

skull focusing for the purposes of thermal ablation

has reached the early stages of clinical testing.

Meanwhile, advances continue in the laboratory

toward expanding both the number of treatable

disorders and the mechanisms of treatment.

The purpose of this paper is to review the clinical

studies that used focused ultrasound beams for brain

treatments and introduce the basic concepts for the

future clinical use of high intensity focused ultra-

sound in the brain.

Early research

Early brain studies date back to the works of Lynn

et al. [1, 2] in the 1940s which targeted areas in the

brains of cats, dogs and monkeys. Although they

concluded that, given their configuration, it was not

possible to produce permanent changes in the brain

without undesired damage, they speculated that

modifications such as removal of the skull bone and

use of multiple focused beams could make

such treatment possible. Ensuing investigations,
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performed after craniotomy, indicated the ability to

produce discrete deep lesions in the brain [3–8] as

well as an ability to open the blood–brain barrier [9]

in a targeted region.

Inspired by the successful clinical trials by the Fry

brothers, several investigators conducted animal

research to establish the biological effects of ultra-

sound in the brain tissue. Most notably, Lele

conducted a large number of experiments, many

with implanted micro-thermocouples. Lele’s work

established that the ultrasound-induced tissue

damage was caused by temperature elevation in the

focus [10, 11]. He continued these animal studies

related to ultrasound surgery of the brain for more

than a decade, with only a few publications but a

wealth of information hidden in student dissertations

and summarized in conference papers. His experi-

mental results established temperature-exposure

time curves for brain tissue damage [12, 13].

He also established the threshold (at one frequency)

for inertial cavitation in brain tissue [14] and

observed that inertial cavitation was associated with

sudden increase in the tissue temperature [15].

Later with some overlap with Lele’s studies,

Natalia Vykhodtseva in the Soviet Union investigated

the parameters for damage in the brain [16],

including the cavitation threshold, pulse shape and

pulse duration.

Clinical treatments through a bone window

The early findings led the way to a 5-year clinical

study beginning in 1957 at City Hospital in Iowa

City, Iowa, led by brothers William J. and Francis J.

Fry of the University of Illinois and Russell Meyers of

the Department of Neurosurgery at the University of

Iowa. The patients were treated for Parkinson’s

disease through a surgery that included opening the

scalp, removing a section of skull bone, and

delivering the ultrasound through the intact dura

[17]. The sonications were performed with a

transducer head that had multiple focused beams

overlapping at their focal spots. The beams were

aimed with the aid of a stereotactic frame based on

X-ray images of bony landmarks. The work by the

Illinois group provided substantial information on

the ability to treat within the brain, while also

establishing quantitative thresholds for inducing

permanent changes in brain tissues [18, 19]. The

Fry method was also tested in the treatment of

malignant brain tumors by Heimburger [20]. These

treatments were performed through the skin, which

was placed over the ultrasound window created by

surgically removing a piece of the skull bone. This

series had a small number of patients and the results

were inconclusive. A more advanced CT-guided

system was developed later but was not clinically

tested [21].

Further insight into the focusing abilities, targeting

and thermal absorption in the brain became available

from focused ultrasound hyperthermia treatments

performed starting in 1986 [22, 23]. These treat-

ments were performed through the skin after the

removal of a portion of the skull bone; the skull being

viewed as a barrier to therapeutic applications in the

brain since the work of Lynn (Figure 1).

Similar through-the-skin and craniotomy sonica-

tions of brain were tested with a MRI-guided focused

ultrasound system in Rhesus monkeys [24]

(Figure 2). Locations up to 4.8 cm deep were

targeted. Focal heating was observed in all cases

with MRI-derived temperature imaging. Sub-

threshold heating was observed at the focus when

the ultrasound beam was targeted with low power

sonications, and in the ultrasound beam path during

high-power exposures. Lethal temperature values

and histologically confirmed tissue damage were

confined to the focal zone (e.g. not in the ultrasound

beam path), except when the focus was close to the

bone. In that case, damage to the neighboring brain

tissue was observed. Focal lesions were observed on

histological examination and, in some cases, in MR

images acquired immediately after the ultrasound

exposures.

This method of using MRI-guided focused ultra-

sound (Exablate 2000, InSightec, Haifa, Israel) after

craniotomy was later used in the treatment of

malignant brain tumors in three patients in Israel

[25]. The results demonstrated some tumor response

and the ability of MRI to guide and monitor the

ablation. It was also shown that brain damage outside

of the focal zone can happen if the transducer and

sonication parameters are not carefully designed for

the treatments. Similar treatment of one patient with

malignant brain tumor was also performed using an

ultrasound imaging guided focused ultrasound

system (Mode-JC HIFU System, Chongquing

Hifu, China) in Korea. The follow-up imaging

showed some evidence of tumor coagulation [26].

Despite the clinical feasibility of performing ultra-

sound surgery through a craniotomy, the method has

not gained clinical acceptance. This is most likely

due to the need of two expensive surgeries to remove

and restore the skull bone.

Development of transskull ultrasound surgery

In the mid-1970s, however, work by Fry et al.

[27–29] began to investigate the possibility of

focusing through the skull with reduced distortion

at frequencies less than 1MHz. They [28] showed
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that focusing is possible, but that these foci tended to

be distorted and shifted.

A means to compensate for the distortion caused

by the skull was demonstrated in the late 1990s.

The approach made use of the development of high-

power phased ultrasound arrays [30–38] and driving

systems suitable for thermal ablation [39]. It was

demonstrated that a phase conjugation approach

with a small transmitter inside the brain could be

used to focus through a skull fragment [40].

Hynynen and Jolesz [41] then demonstrated that a

focus distorted by the insertion of a human

skull fragment in a water bath could be restored by

simply adjusting the driving phase of each element in

US transducer

Water
Skull-window

Skin

Tumor

Brain
Skull

Figure 1. Ultrasound guided focused ultrasound treatment of brain tumors as described in [22]. Top, Left: A diagram
of the treatment setting showing the skull window through which the beam is propagating into the tumor. Right: A foam
mold made for each of the patients to allow positioning of the head. The mold has a hole through which the ultrasound
is propagating in to the brain. Bottom, Left: A CT image of a patient in a treatment position in the head mold. The image
shows a thermocouple probe that was inserted to monitor and guide the treatments. In this case the prior surgery
had removed most of the tumor (shown as a fluid filled cavity with tumor in the enhancing rim). Right: An ultrasound image
of a patient during the treatment showing a thermocouple probe and the tumor.

Figure 2. MRI slices, showing (left, center) the ultrasound transducer coupled via a water interface to a Rhesus monkey
that has undergone a craniotomy before replacement of the skin, and an ultrasound-induced lesion (right) is enhanced
following sonication (graphic courtesy of N. McDannold).
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a spherically curved transducer array with transducer

elements large enough to make practical, high gain

arrays feasible. The technique resembled an aberra-

tion correction method proposed for diagnostic

ultrasound by Smith et al. [42] a decade earlier.

While the skull distorts the ultrasound field, it also

absorbs ultrasound energy, causing unwanted heat-

ing in and around the skull and attenuating the

beam. To attain a focus intense enough to coagulate

tissues without overheating the skull, a hemispherical

transducer design was devised to maximize the

surface area of the skull, and thus distribute the

energy [43, 44]. In numeric studies it was deter-

mined that approximately 64 elements were suffi-

cient to focus the ultrasound after phase correction

while maintaining skull temperatures below the burn

threshold. A 64-element array with a 30-cm diameter

was prototyped [45], constructed and tested [46],

verifying the earlier numeric work.

With the feasibility of treatment verified, practical

methods for reconstructing a focus were sought. One

suggested method was the use of a small—perhaps

catheter-inserted—receiver in the brain that would

serve as a beacon to be used in conjunction with

phase conjugating electronics [47], or alternatively as

a receiver for phase correction [48]. However, it was

the development of a model-based approach to focal

restoration that made the technique completely

non-invasive [49] (Figure 3). This spectral method,

as well as a related finite-difference approach [50]

required information from CT images in order to

infer density, sound speed [49, 51, 52], and to

register the transducer with the skull (Figure 3).

From simulations of ultrasound propagation into

the brain [44] it was determined that a phase-

corrected array on the order of 500 elements would

produce a focus of about 1mm in diameter in the

brain at the array’s geometric center. Thermal

studies comparing the temperature rise at the focus

to that on the skull surface further indicated that the

optimal thermal gain between the focus in the brain

and the skull surface is reached, on average, at

frequencies near 0.7MHz [46, 53]. Based on these

studies a 500-element 1–3 piezocomposite MRI-

compatible transducer was designed and constructed

[54]. The composite material was used to allow

for flexibility in the transducer bandwidth without

impeding the high-power continuous-wave operation

RF-signals

Skull

No phase correction

Transducer
elements

Transducer
elements

RF-signals

Skull

Phase correction
to compensate for
the skull thickness

Figure 3. Top, Left: A diagram showing the wave distortion induced by a skull. Top, Right: The measured
focused ultrasound field after it propagated through an ex vivo human skull showing the multiple foci induced. Bottom,
Left: A diagram showing the adjustment of the phase of the array elements to compensate for the skull induced
wave distortion. Bottom, Right: The measured ultrasound field after propagating through the ex vivo human skull when
a CT correction algorithm was used to correct for the distortion induced by the skull [49].
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of the array. Although this array was primarily

intended to provide adequate aberration correction

at the geometric focus rather than electronic steering

[43], the array also allowed for limited electronic

beam steering.

Equally critical to brain procedures has been the

ability to target and monitor the treatment region.

MR-guided focused ultrasound surgery (MRgFUS)

[55–59] has demonstrated the ability to image both

the tissue structure and the temperature rise

throughout the region. Operation required that the

ultrasound applicators were MR compatible, impos-

ing unique design criteria for the ultrasound appli-

cators [54, 55, 60]. MRI studies were critical to

identifying potentially dangerous thermal variation

over the skull surface [61], as well as methods to

correct for such variation [62]. These studies also

indicated the need to circulate cooled, degassed

water between the array and the patient to provide

skin and skull surface cooling to avoid excessive

temperatures and tissue damage.

The complete 500-element MRI-guided system

was tested by sonicating ultrasound phantoms and

in vivo rabbit muscle and brain tissue using both

model-based and hydrophone-based phasing through

ex vivo human skulls [60]. These experiments showed

that adequate energy can be delivered through the

human skull to ablate an in vivo brain tissue, and that

MRI can detect the focal temperature rise and tissue

coagulation. It had been shown earlier with in vivo

rabbit brains that the focal hot spots induced by sub-

threshold sonications could be detected with MRI

thermometry [63] allowing accurate targeting prior to

ablative sonications.

Separate experiments with an ultrasound-guided

system and 300-element array [64] were also

performed in vivo in sheep [65] demonstrating that

transskull focal brain tissue coagulation is feasible.

In these experiments, an invasive hydrophone was

used to aid in the aberration correction. This work

has recently been continued with in vivo monkey

experiments that demonstrated model-based trans-

skull brain ablation [66].

Clinical transskull ultrasound
surgery procedure

Based on the culmination of brain research, a clinical

brain system has been produced (ExAblate 3000,

InSightec, Haifa, Israel) (Figure 4). This system was

tested in the treatment of Rhesus monkeys to verify

the system functionality and determine the level of

temperature elevation at the skull bone surfaces [67].

These experiments also allowed the testing of the

treatment planning programs. The results clearly

demonstrated the importance of having a uniform

ultrasound intensity at the skull surface and showed

that high enough powers can be transmitted through

the monkey skull to allow focal tissue coagulation

in humans.

A clinical treatment series with three patients was

then performed to gather feasibility information and

determine clinical patient machine interface features.

Briefly, the patient treatment is executed in the

following manner.

Non-invasive brain procedures begin with a high-

resolution CT scan of the patient’s head using a bone

kernel (Typical FOV 200mm with 0.75-mm slice

thickness), which is rendered into three dimensions

to provide relevant acoustic input parameters.

These CT images must be registered with both the

reference frame of the treatment transducer as well as

the MRI scanner for treatment planning. Treatment

planning is performed with the patient’s head rigidly

affixed to the treatment array. In the initial trial this

was done using a facemask. However stereotactic

frames (that have been routinely used in radio-

surgery) secured to the patient’s head provide the

most rigid support, and offer an ability for planning

to be performed hours before the actual treatment.

The planning procedure numerically simulates the

ultrasound beam along its path through the skull

bone and into the brain in order to determine the

amplitude and phase of the ultrasound when it

reaches the intended focal position. While there are

many possible approaches to simulating the ultra-

sound field, only the spectral approach [49] has been

shown to repeatedly focus through the skull over a

range of skull samples. The primary contribution of

the planning is to determine the relative phase of the

ultrasound contributed by the individual elements in

the array. Once determined, the individual phases

can be adjusted, so that the contributed beam from

each element arrives at the focus in phase.

Furthermore, the path of the ultrasound beam

through the skull is identified (Figure 4a). If energy

from a given element is severely attenuated or

refracted in such a way that it cannot contribute

appreciatively to the focus, the amplitude of

this element can also be adjusted. In severe cases

this element can be turned off, as it will only deposit

energy in the skull or other undesired volumes. In

cases of milder attenuation it may be more beneficial

to increase the amplitude of the element in order to

strengthen its pressure output [62].

The patient is prepared for treatment by shaving

and cleaning the scalp before inserting the head into

a watertight membrane that is affixed to the treat-

ment array. The region between the array and the

patient is filled with degassed water cooled to

approximately 15�C in order to cool the outer

surface of the skull to prevent overheating.
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The clinical trial of treating neoplastic brain

tumors is currently under way at the Brigham and

Women’s Hospital, Boston, MA, USA. Another

study expected to start also at Univeristy Children’s

Hospital in Zurich, Switzerland, will initially target

non-invasive functional neurosurgery starting with

neurogenic pain, with plans to extend into

Parkinson’s disease and epilepsy. The first series in

Boston treated three patients, verifying transskull

focusing and the quantity of skull heating. The

continuation of the trial is pending modifications

to be made to the patient immobilization system.

Future applications

Although transskull thermal coagulation of tumors

appears feasible, it may turn out that cavitation-

enhanced heating [68–71] or mechanical tissue

destruction [72] may offer benefits due to the

increased focal energy absorption and thus reduced

energy transmission through the skull. Owing to the

reduced time, average power requirement, low-duty

cycle, high-pressure amplitude sonications inducing

cavitation were originally proposed as the method of

choice for transskull surgery [41]. By injecting an

ultrasound contrast agent with preformed micro-

bubbles into the blood stream, the thermal and

mechanical tissue damage methods can be combined

[73]. This could results in at least an order of

magnitude reduction in the required power. An

example of a focal lesion that was produced with only

8 Watts of acoustic power emitted by the transducer

during 20 s sonication through an ex vivo human

skull in a living rabbit brain after a bolus injection of

an ultrasound contrast agent is shown in Figure 5.

Ultrasound holds the promise of providing multi-

ple therapeutic functions in the brain by way of

coagulative necrosis, through potential reversible

blocking of certain functions [74], by assisting

in the delivery of thrombolytic agents [75–77], or

through delivery of an agent to a targeted volume by

opening of the blood–brain barrier. These methods

have been suggested for the treatment of Parkinson’s

512
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Ultrasound phased
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Temp.
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Degassed cooled water
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CT

XYZ-mechanical
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(a) (b)
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Figure 4. A clinical prototype brain treatment system (Exablate 3000, InSightec, Inc., Haifa, Israel). (a) An illustration
of the treatment planning showing how each of the ultrasound beams are propagated through a section of a skull based on the
CT images obtained before the treatment and co-registered with the online MR image. (b) A photograph of the 512-element
array and the mechanical positioning system. (c) A block diagram of the complete system. (d) A temperature elevation image
derived from the MRI thermometry information at the end of a sonication of a monkey [67]. The hotspot and the skull
heating are visible in the image.
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disease, epilepsy and tumors and to inhibit transmis-

sion of nerve signals in the brain [74] and may be

useful in targeting genetherapy [78, 79].

Significant attention has recently focused on the

ability of ultrasound to temporarily open the blood–

brain barrier (Figure 6), providing a means for

spatially targeted and time-windowed passage of

therapeutic agents into the brain. It has long been

recognized that ultrasound can disrupt the blood–

brain barrier [9] but the prospect of creating a

controlled reversible process [80], introduces sig-

nificant promise for delivering agents that currently

cannot be delivered into the brain. Furthermore, the

prospect of targeting may protect certain areas in the

brain while providing benefit to the target. Online

monitoring abilities [80–82] make the procedure

especially exciting.

Much work remains to be performed for disease-

specific models and drugs in order to determine

clinical viability, but the body of quantitative data is

increasing rapidly. A range of particle sizes has been

demonstrated to pass the blood–brain barrier,

including molecular weights of 961 (trypan blue),

938 (Magnevist�), 10 000 (MION) [82], 40 000

(horseradish peroxidase) [83], and 150 000 (anti-

bodies) [84]. Recent evidence has indicated that

significant concentrations of the chemotherapy drug

liposomal doxorubicin can be delivered to the

normal rat brain [85], and the monoclonal antibody

Herceptin in mice [84].
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