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Forward Planar Projection Through Layered
Media

Gregory T. Clement and Kullervo Hynynen, Member, IEEE

Abstract—A planar forward projection algorithm is com-
bined with ray theory to describe longitudinal propagation
through an arbitrary number of randomly oriented isotropic
layers. This method first measures the space-time pressure
field in a plane, then uses wavevector frequency-domain
methods to project the field through layered media and to
an arbitrary new plane, not necessarily parallel to the ini-
tial plane. The approach is valid for longitudinal propaga-
tion through liquid layers and in solids, such as soft tissues,
that can be approximated as viscous liquids. The algorithm
is verified by propagating the field from a 0.5 MHz planar
transducer through a combination of rubber, plastic, and
water layers. Hydrophone measurements indicate correla-
tion between measured and simulated fields for angles be-
low the longitudinal critical angles of the layered materials.

I. Introduction

Planar projection methods use signal information in a
single plane to provide the signal at any other point in

space or time. Although a variety of algorithms have been
described [1]–[8], the methods generally relate the field be-
tween two spatially or temporally separated planes by a
projection operator in the wavevector-frequency domain or
the wavevector-time domain. Stepanishen and Benjamin
[2] first described the forward and backward projection
technique in acoustics for propagating transient acoustic
signals within a sourceless, homogeneous medium.

A major advantage of planar projection methods [2], as
well as other wavevector and frequency domain methods
[9], [10], is a substantial reduction in computation time
as compared to integral finite element or finite-difference
algorithms. As a result of their efficiency, the projection
techniques have been applied to a wide number of prob-
lems, both linear and nonlinear [11], in which homogeneous
medium may be assumed. Such uses include aberration
correction [12], transducer characterization [13], full-field
reconstruction [7], and the projection of transient and lo-
calized waveforms [14], [15].

The present study expands the wavevector-frequency
domain projection method to include first-order propaga-
tion through randomly oriented, dissipative, layered me-
dia. Other notable studies have described the inclusion of
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layers [16], [17], absorption [18], and scattering [18] in pla-
nar projection methods, but they have been limited to
cases of parallel layers. We describe, explicitly, a prop-
agation algorithm derived from Stokes linear equation,
which introduces several novel aspects to the wavevector-
frequency domain planar projection. The projection oper-
ator is extended to include a passive rotation in wavevec-
tor space that allows the field to be projected along arbi-
trary axes not necessarily perpendicular to the measure-
ment plane. Inclusion of this rotation allows signals to be
efficiently projected toward a source that is located away
from the measurement axis. The method also includes the
effects of dispersion arising from the relaxation time of the
media. And, the method is combined with ray theory to
describe the propagation through randomly oriented lay-
ers.

To verify the algorithm, a series of layered cases are
simulated and compared with experimental measurements
performed at ultrasonic frequencies in a water tank. Cor-
relation between the model and the experiment are found
at incident angles less than the critical angle for fluid in-
terfaces. These examples have direct application in layered
biological media [19], in which the method may be used to
propagate an ultrasound beam through sections of layered
soft tissue or bone for diagnostic or therapeutic purposes.

II. Theory

A. Planar Propagation

The projection problem assumes a generalized pressure
field with an acoustic pressure p(r, t) that satisfies the lin-
earized Stokes equation [20]:(

1 + τ
∂

∂t

)
∇2p(r, t) =

1
c2 p(r, t), (1)

where c is the real sound speed and τ is the relaxation
time for the medium. Both of these quantities are, in gen-
eral, functions of frequency. The projection is considered
in Cartesian coordinates to relate the field between two
planes at z0 and z. A Helmholtz equation:(

∂2

∂z2 + k2
)

p(kx, ky, z, ω) = 0, (2)

is obtained by the substitution of a Fourier integral with
respect to the x and y coordinates into (1), where the
Cartesian wavenumbers are given by kx and ky and ω is
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the angular frequency. This equation is expressed in terms
of a complex wavenumber k given by:

k =

√
ω2

c2

1
1 + iτω

− k2
x − k2

y, (3)

To propagate the field in a plane at a distance z0 in
front of a source to a new plane z, the advanced solution
of (2) is used:

p(k, z) = p(k, z0)eik(z−z0). (4)

In the wavevector-frequency domain, the field over the
plane z0 is related to the field at any other plane z by a
simple transfer function given in the right-hand side in (4).
It is easily seen that, when the relaxation constant is set
to zero, the amplitudes of any two parallel planes within
the propagation band limit ω2

c2 ≥ k2
x + k2

y are identical in
amplitude and vary only in phase. When attenuation or
layers are considered in the media, the transfer function
must be modified [18], [21].

B. Dispersion

The complex wavenumber given by (3) is expressed in
terms of the relaxation constant, τ , which is particular to a
given layer type and is generally not known. However, (3)
may be separated into its real and imaginary parts such
that:

κ + iα =
ω

c

1√
1 + iτω

. (5)

The imaginary part of the wavenumber is the absorp-
tion coefficient, which is assumed known. In terms of the
relaxation constant:

κ =
ω

c

1√
2

[√
1 + (ωτ)2 + 1
1 + (ωτ)2

] 1
2

α = −ω

c

1√
2

[√
1 + (ωτ)2 − 1
1 + (ωτ)2

] 1
2

, (6)

which provides a pair of coupled equations, allowing κ to
be determined if the frequency-dependent absorption coef-
ficient of a given layer is known (empirically or otherwise).
Substitution of (5) into (4), and separation of the real and
imaginary exponents using DeMoivere’s formula [22] re-
sults in a new projection function:

p(kx, ky, ω, z) =

p(kx, ky, ω, z0)e(z−z0)R
1
/2 sin ξ

2 ei(z−z0)R
1
/2 cos ξ

2 , (7)

where,

R =
√

(α2 + κ2 − k2
x − k2

y)2 + 4α2κ2 (8)

and

ξ = tan−1
[

2κα

κ2 + α2 − k2
x − k2

y

]
, (9)

noting that κ and α are coupled by (6). The first expo-
nential term in (7) represents the decay in amplitude ex-
perienced as a function of kx and ky. Similarly, the second
exponential term provides the phase shift.

C. Rotation

The spatial Fourier transform projection method is of-
ten referred to as the angular spectrum approach because
the transform may be viewed as an angular decomposi-
tion of the field. That is, each point p(kx, ky, ω, z0) de-
scribes a planar wave with a wavenumber

√
k2

x + k2
z pass-

ing through the measurement plane at an angle equal to
ψx = sin−1 kx

c
ω from the z-axis in the x-z plane and with a

wavenumber
√

k2
y + k2

x at an angle ψy = sin−1 ky
c
ω in the

y-z plane. The amplitude of the wave is equal to the mod-
ulus of p. This concept is illustrated for a two-dimensional
case in Fig. 1. The figure may also be viewed at a two-
dimensional projection of the three-dimensional case in
which the polar angle θ and azimuthal angle φ are given by:

tanψx = tan θ cosφ

tanψy = tan θ sinφ
. (10)

For a transient signal, each temporal frequency compo-
nent possesses a unique angular spectrum, so that a gener-
alized waveform will constitute a three-dimensional space
(kx, ky, ω), consisting of two spatial frequency dimensions
and one temporal frequency.

Viewing the field over the plane at z0 as an angular
decomposition, it becomes straightforward to perform a
passive coordinate rotation. To orient the plane along a
new projection axis, z′

o, each point p in wavevector space
is mapped to the rotated plane such that:

k′
x

k′
y

k′
z


 = Â

(
φROT , θROT , ψROT

)
kx

ky

kz


 , (11)

where Â
(
φROT , θROT , ψROT

)
represents an Euler rotation

matrix, φROT is the azimuth of a vector along z′
0 in the

unrotated coordinate system, θROT is the angle between z
and z′

0, and ψROT is the third Eulerian angle that rotates
about the z′

0 axis. Projection along the new axis to an ar-
bitrary new plane z′ can be achieved using (4). The inverse
Fourier transform performed after this mapping provides
the pressure field in the plane rotated to

(
θROT , φROT

)
.

An interesting application of the rotation arises when the
exact orientation of the source is not known. In this situa-
tion the source location can be obtained from the Fourier
transform of the pressure field, taking the angles associ-
ated with maximum amplitude of p(kx, ky, ω, z0).

D. Propagation Through Layers

Propagation through layered media in wavevector space
is achieved by determining how the layers distort each
point in the space. An arbitrary field incident upon a series
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Fig. 1. Two-dimensional illustration of the spectral decomposition (left) and rotation (right). The field initially at the plane perpendicular
to z0 is rotated and projected to a new plane perpendicular to z′.

of planar layers is first considered, as this will be the basis
for later describing propagation through curved surfaces.
Each wavevector component over the plane at z0 is associ-
ated with a wavevector k0xy(ω) = kx(ω)̂i + ky(ω)ĵ, where
the indices (x, y) indicate the position of the component in
k-space. The angle of incidence between a given wavevec-
tor and the vector normal to the outer surface of the nth
layer is given by γinxy (ω), and the transmitted angle by
γtnxy(ω). For a layer with sound speeds cn and density ρn,
the pressure transmission coefficient at its lower interface
is given by [23]:

Tnxy(ω) =
2ρn+1cn+1 cos γinxy cos γtnxy

ρncn cos γtnxy + ρn+1cn+1 cos γinxy

,
(12)

where the incident and transmitted angles are understood
to be a function of frequency. Because the problem has
been decomposed into a series of plane waves, transmis-
sion of the field from the outer surface to the next layer
may be treated either by using a ray method or by applying
the continuity of the pressure and normal particle velocity
at the interface. The ray method is described below in de-
tail, as it leads to the general case of propagation through
nonparallel layers. In this first-order propagation, multiple
reflections within the layers are neglected, although such
higher order reflections could readily be added as neces-
sary.

Regardless of whether or not the layers are parallel, the
transfer function readily may be written in a closed form.
In addition to the thickness across the z-axis, zn, the sound
speed cn, and density of each layer ρn, it is necessary that
the unit vectors normal to the layer surfaces n̂n be cal-
culated. For a given initial wavevector k0xy, the ray path
from (0, 0, z0) between any two surface interfaces traverses

Fig. 2. The field is decomposed into planar waves, which are directed
through layers, keeping track of the overall phase variation, ampli-
tude, and orientation.

a distance of:

|Rnxy| =
(znxy − rnxy) · n̂n+1

k̂nxy · n̂n+1
, (13)

where, as depicted in Fig. 2, rnxy is the vector extend-
ing along the layer from the z-axis to the intercept of the
layer with the ray. The unit vector along the wavevec-
tor’s path is given by k̂nxy. Again, the frequency de-
pendence on the wavevector orientation is understood.
It follows that the ray position vector must be equal to
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Rnxy = |Rnxy| k̂nxy. Although the initial wavevector ori-
entation, k̂0xy, is known, the direction of the wavevector
in the first and subsequent layers must be calculated using
the relation [24]:

1
cn

(
n̂n+1 × k̂nxy

)
=

1
cn+1

(
n̂n+1 × k̂n+1xy

)
,

(14)

which is a consequence of Snell’s law in three-dimensional
space that requires the incident wavevector, the transmit-
ted wavevector, and the normal vector all be in the same
plane. The transmitted wavevector on the right-hand side
of (14) may be obtained by crossing both sides of the equa-
tion with n̂n+1. Using cross-product relations, it may be
shown that:

k̂n+1xy =
cn+1

cn

(
k̂nxy − cos γin+1xy n̂n+1

)
+cos γin+1xy n̂n+1.

(15)

The incident unit wavevector of the nth layer is simply
equal to the transmitted wave of the (n − 1)st layer. With
the exception of the 0th layer shown in Fig. 2 it also is
necessary to find rnxy in order to calculate (13). Given
the thickness across the z-axis of each layer, the point of
intersection of ray Rn with the surface of the n+1 layer is:

rn+1 = Rn + rn − zn. (16)

Over a series of N layers, the phase of a ray reaching
the Nth plane φR (kNxy, ω) is the sum of the phase contri-
butions over each path length given by (13). The spatial
phase at the plane z, is related to the ray phase at N by:
φN (kNxy, ω) = φR (kNxy, ω) − 2πkNrN sin γNxy, as illus-
trated in Fig. 2. A ray leaving the initial plane with a
polar angle γ0xy(ω) will arrive at the plane z with a new
orientation γNxy(ω) determined by the N − 1 unit vector
k̂N−1.

φ (kNxy, ω, z) = φ (k0xy, ω, z0)

+
N−1∑
n=0

kn
(zn − rn) · n̂n+1

k̂n · n̂n+1
− sin γNxy(ω), (17)

given φ (k0xy, ω, z0), the phase of p (kx, ky, ω, z0) at the
initial plane.

The pressure over the plane at z can be expressed in
terms of the ray phase presented in (17) and the transmis-
sion coefficient in (12) by:

p (kNxy, ω, z) = p (k0xy, ω, z0) e−i sin γNxy(ω)[
N−1∑
n=1

Tnxy(ω)eiφN (kNxy,ω,z)

]
, (18)

where the terms in square brackets on the left-hand side
of (18) can be viewed as an operator that maps the field
from k0-space to a new kN -space. In practice, this mapping
requires interpolation to produce a linearly spaced matrix
at z.

E. Nonplanar Surfaces

The layered-projection method may be used for the
propagation of a field through a curved surface, provided
the surface is sufficiently smooth relative to the highest
relevant wavenumber. The field is projected to a plane
near the surface and is then divided into a series of virtual
sources. The region of the surface penetrated by a given
source is approximated as planar, so the actual surface over
the beamwidth of the source must agree with this approx-
imation to at least within 1/4 λ (or less, depending upon
the desired tolerance) of the maximum frequency kmax. At
the same time, the source diameter S must be large enough
that the smaller frequency components of the source are in
the near field relative to the Rayleigh distance, requiring
S >

√
z/2kmin, where kmin is the smallest appreciable fre-

quency of the signal and z is the distance from the starting
plane to the surface. The projection may be performed if
these requirements can be met. It is noted that, although
the planar field is uniquely divided into a continuous se-
ries of sources, the fields of the sources will overlap on the
surface.

When propagating through multiple layers, each of the
surfaces is segmented as described above. It is possible
that components with high-transmission angles will leave
the surface of interest. Although the algorithm may be
used to treat such occurrences, the discussion is beyond the
scope of the current topic. Hence, the wavevector compo-
nents are assumed to remain within the segmented regions
illustrated in Fig. 2.

III. Simulation

Several propagation examples were considered in or-
der to demonstrate the projection method and verify it
with laboratory measurements. The examples considered
harmonic signals propagated through layered geometries
that could be actualized readily in experiments. These rel-
atively simple situations are relevant to more complex spa-
tial and temporal problems because the algorithm decom-
poses all broadband and nonplaner problems into these
simple cases. The examples also helped to identify the
model’s limitations and to provide directions for future
work.

Specifically, propagation was simulated through three
parallel layers, five parallel layers, and three nonparallel
layers. The dimensions, orientations, sound speeds, and
densities of the layers corresponded to plastic and rubber
materials used in experiments to verify the simulations.
Diagrams of the layers are given in Fig. 3. The source for
the simulations was an 18-mm diameter circular piston,
which was operated at frequencies ranging from 0.4 MHz
to 0.7 MHz. In the three-layer simulation, a water-plastic-
water interface was considered (ρw = 1000 kg/m3, cw =
1.498 m/s, ρp = 1187 m/s, cp = 2185 m/s). The plastic
layer (Plastic 1) was 11.8 mm thick, the distance from the
source to the measured plane was 121 mm and the distance
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Fig. 3. Illustration of the transducer diameter and the thickness of
the materials used to verify the projection algorithm.

TABLE I
Summary of Material Properties.

Material Thickness (mm) ρ (kg/m3) c (m/s)

Water Variable 1000 1498
Plastic 1 11.8 1187 2185
Plastic 2 3.1 1236 2770
Rubber 6 1089 1520
Plastic 3 9.8* 1233 2485

* radius across transducer axis with surface normal to
the transducer face.

from the plastic inner surface to the source was 61 mm.
The second parallel-plate simulation was calculated for a
field through five layers consisting of water-plastic rubber-
plastic-water (ρr = 1089 kg/m3, cr = 1520 m/s). The plas-
tic layers (Plastic 2) were each 3.1 mm thick, and the rub-
ber layer was 6.0 mm thick. The distance from the source
to the measured plane was 49 mm, and the distance from
the plastic inner surface to the source was 60 mm. The
third simulation involved a water-plastic-(Plastic 3)-water
wedge (ρw = 1233 kg/m3, cw = 2485 m/s). The wedge sur-
faces differed by an angle of 7.05◦. The material properties
and dimensions are summarized in Table I.

A numeric algorithm was implemented in Matlab, using
matrix-based operations to calculate (18) for parallel layers
and for nonparallel layers. The pressure field representa-
tion in the wavevector-domain p (k0xy, ω, z0) was achieved
using discrete approximation to the Fourier integral using
the matrix operation:

pkxkyω =
1
2π

([
px1y1 px1yn

pxny1 pxnyn

]
ω

[
eiky1y1 eikxnx1

eiky1yn eikxnxn

])T

[
eikx1x1 eikyn y1

eikx1xn eikyn yn

]
∆kx∆ky (19)

Fig. 4. Measured (circles) and calculated (squares) on-axis normal-
ized pressure amplitude as a function of incident angle through a
planar plastic plate.

for each frequency (a single temporal frequency was used
in the present continuous wave (CW) examples) with a
spatial frequency resolution of ∆kx = ∆ky = 2.1 ×
10−4 rad/m. Operations were performed on a 1-GHz
AMD-Based PC (AMD, Sunnyvale, CA). A typical pro-
jection of a complex 128 × 128 matrix through five layers
took approximately 30 seconds to calculate. A projection
of the same matrix through five nonparallel layers took
less than 1 minute.

IV. Experimental Procedure

Propagation experiments were set up in a water tank
to verify the numeric results described above. Plastic and
rubber plates were pressed together into layers correspond-
ing to the three layer (water-Plastic 1-water), and five layer
(water-Plastic 2-rubber-Plastic 2-water) simulations. Mea-
surements were performed in degassed and deionized wa-
ter in a tank padded with rubber to inhibit reflections
from its walls. Ultrasound signals were generated by a 3-
cm diameter piezo-composite ultrasound transducer and
received with a 0.2 mm Polyvinylidene difluoride (PVDF)
hydrophone (Precision Acoustics, Dorchester, UK). Prior
to hydrophone measurement, one of the layered plates was
placed between the hydrophone and transducer at an an-
gle that was controlled by a rotational stepping motor
(Parker, Irwin, PA). A three-dimensional linear position-
ing system (Velmex, Bloomfield, NY, Model VP9000) al-
lowed the hydrophone to be scanned over a measurement
area centered about the transducer’s axis of symmetry.
Transducer signals were generated by an arbitrary wave-
form generator (Wavetek, Norwich, UK, Model 305) fed
to a power amplifier (ENI, Rochester, NY, Model 2100L).
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Fig. 5. Subtraction of the measured and calculated phases through a plastic plate over a 30 mm by 30 mm measurement plane at 0◦, 15◦,
30◦, and 45◦.

Fig. 6. Measured and calculated (solid line) phases in a line over the
beamwidth, at 0◦ (triangles), 15◦ (circles), and 30◦ (squares).

The hydrophone’s voltage response was sent though a
Precision Acoustics pre-amp and an amplifier (Preamble
Instruments, Beaverton, OR, Model 1820) before it was
recorded by a digital oscilloscope (Textronix, Wilsonville,
OR, Model 380). Both the scan position and the data ac-
quisition were computer controlled.

V. Results

A. Propagation Through Parallel Layers

The 11.8-mm thick acrylic plate was placed in the test
tank, and the acoustic transmission was measured on the
transducer’s axis of symmetry 121 mm from its face. The
measurement was repeated for incident angles of 0◦, 15◦,
30◦, and 45◦ at 500 kHz. Agreement between the mea-
sured and simulated waveforms was evaluated by compar-
ing the overall amplitude shape, as well as amplitude and
phase magnitudes over the 30 mm by 30 mm measure-
ment plane. Numeric and laboratory measurements both
were calculated as a fraction of the peak value measured
in water with no plate present, allowing a relative compar-
ison of the simulated and experimental fields. Correlation
was observed between the measured and predicted fields
at incident angles below 31◦, which is the longitudinal crit-
ical angle for the signal’s spectral peak. The on-axis error
between the measured and simulated pressure amplitude
was calculated as the difference between the modulus of
the measured and simulated pressure fields divided by the
measured result. The discrepancy was found to be 9.1%
at 0◦ incidence, 0.05% at 15◦ incidence, 5.1% at 30◦ in-
cidence, and 98% at 45◦. The mean error of all points in
the 30 mm by 30 mm measurement plane 19% at 0◦ in-
cidence, 6% at 15◦ incidence, 79% at 30◦ incidence, and
96% at 45◦ incidence. The simulated and measured on-axis
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Fig. 7. Measured (top) and simulated (bottom) amplitudes and phase through a five-layer, water-plastic-rubber-plastic-water field 15◦.

Fig. 8. Measured (circles) and calculated (squares) on-axis normal-
ized pressure amplitude as a function of incident angle through a
five-layer, water-plastic-rubber-plastic-water field.

pressure amplitudes below the critical angle are presented
in Fig. 4.

The mean phase difference between all measured and
simulated points, shown in Fig. 5, was calculated by sum-
ming the phase errors at each point over the 30 cm by

30 cm measurement plane at 1-mm intervals. The mean
phase difference was found to be 5.3◦ ± 13◦ at 0◦ inci-
dence, 7.0◦ ± 9.8◦ at 15◦ incidence, and 30◦ ± 23◦ at 30◦

incidence. The uncertainty ranges are over two standard
deviations of the data. The numeric and measured phases
for the angles below the critical angle are presented in
Fig. 6 for radial lines crossing the center of the measure-
ment plane. Again, beyond the critical angle, the measured
signal is primarily due to lateral modes of vibration in
the plastic, which are neglected in the present model. The
large uncertainty between the measured and modeled data
(−3.9◦ ± 99◦ at 45◦ incidence) demonstrates this lack of
correspondence.

Similar analysis was performed for measurements of
the 6.0-mm rubber plate sandwiched between two 3.1-mm
plastic plates. Fig. 7 shows the measured and simulated
amplitude and phase after passing through the plate at an
incident angle of 15◦. Fig. 7 illustrates the shifting of the
layers (in this case the amplitude is shifted to the right
and the phase is shifted to the left), and the simulation’s
ability to track these shifts. The on-axis error between the
measured and simulated pressure amplitude was 12% at 0◦

incidence, 25% at 15◦ incidence, 68% at 30◦ incidence, and
99% at 45◦ incidence. The simulated and measured on-axis
pressure amplitudes are presented in Fig. 8. The mean er-
ror of all points in the 30 mm by 30 mm measurement
plane 17% at 0◦ incidence, 17% at 15◦ incidence, 57% at
30◦ incidence, and 98% at 45◦ incidence. The mean phase
difference between all measured and simulated points was
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Fig. 9. Subtraction of the measured and calculated phases through a five-layer, water-plastic-rubber-plastic-water field over a 30 mm by
30 mm measurement plane in water at 0◦, 15◦, 30◦, and 45◦.

found to be 13◦ ± 6.9◦ at 0◦ incidence, −8.7◦ ± 12◦ at
15◦ incidence, and −39◦ ± 26◦ at 30◦ incidence. These
differences are illustrated in Fig. 9.

B. Propagation Through Nonparallel Layers

The polystyrene-polyester based wedge in Fig. 4 was
oriented at various angles between the transducer’s prop-
agation axis and the wedge surface. Field measurements
were performed at orientation angles equal to −22◦, −15◦,
0◦, 15◦, and 22◦, in which the angle refers to the difference
angle between the transducer face and the wedge surface
closest to the hydrophone. Negative angles correspond to
the direction producing a longer axial length [z2 in (16)]
through the wedge. The on-axis error between the mea-
sured and simulated pressure amplitude was observed to
be systematically higher for the simulation, as illustrated
in Fig. 10, with errors ranging from 5.8% at 15◦, to 32.1%
at −22◦. The mean error over all points in the measured
plane ranged from 8% at 0◦ incidence to 19% at 22◦ inci-
dence.

With the exception of the propagation at an incident
angle of 22◦, the simulated ultrasound phase successfully
predicted the ultrasound phase to within 20◦ of the mea-
sured values. The mean phase difference of all measured
points, shown in Fig. 11, was found to be 18◦ ± 12◦ at
−22◦ incidence, 15◦ ± 9.5◦ at −15◦ incidence, 19◦ ± 8.7◦

at 0◦ incidence, 8.9◦ ± 8.8◦ at 15◦ incidence and 67◦ ± 14◦

at 22◦ incidence.

Fig. 10. Measured (circles) and calculated (squares) on-axis normal-
ized pressure amplitude as a function of incident angle through a
planar plastic plate.

VI. Discussion

The layered-projection model applies the forward and
backward planar projection method to the complex prob-
lem of propagating through inhomogeneous materials.
This computationally efficient and adaptable method is
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Fig. 11. Subtraction of the measured and calculated phases through a plastic wedge over a 30 mm by 30 mm measurement plane at −22◦,
−15◦, 15◦, and 22◦.

used with a ray-based theory to propagate an arbitrary
waveform through any number of arbitrarily oriented lay-
ers.

In its present form, the algorithm considers only lon-
gitudinal propagation in fluid-like materials. Hence, the
effects of mode coupling in solids are neglected, which will
cause the model to break down at high incident angles.
This is evident in the example of the 11.8-mm plastic plate,
in which the amplitude and phase of the transmitted signal
is poorly predicted beyond the critical angle for longitudi-
nal propagation.

The model requires that the structure of the medium
be known a priori and is practical only for applications in
which this is feasible. In biological and medical applica-
tions, this information could be obtained from X-ray com-
puted tomography (CT) or magnetic resonance imaging
(MRI). Potential uses of the method include aberration
correction for ultrasound imaging as well as for therapy.
For any physical applications, the effects of imperfections
on the source array can be included easily by using pla-
nar measurements of the transducer’s pressure field as the
starting plane for the algorithm.

Phase and amplitude aberration correction could be
performed by segmenting the propagation medium as de-
scribed in Section II, and propagating through layers
within the section. The acoustic pressure then can be cal-
culated by summing the contributions of the different seg-
ments. To restore a destroyed or distorted focus, the seg-
mented data could be used to determine the magnitude of

phase and amplitude distortion experienced through each
segment, then offset by adjusting the individual elements
in a transducer array. In this manner, the goal is to com-
bine the fields so that the individual segments arrive in
phase at the focal point. A previous study [25] through
skull bone predicts that, even if a significant number of
array elements contain a high-phase error, improvement
in a focus through skull bone is possible. Specifically it
was indicated that if 50% of all element contributions by
a 1000 point array deviated by more than 38◦, it was still
possible to improve the focal peak to 76% of the value
expected with perfect phasing.

We already have applied a special case of the projection
approach toward a study on transskull focusing, which was
performed in parallel with the present theoretical study
[26]. In this focusing experiment, human skulls were ap-
proximated as a single-layer structure. The approach seg-
mented the skulls into 320 single-layer plates, which were
evaluated using a special case of the propagation theory,
valid only for parallel layers. The method successfully re-
stored an ultrasound focus through 10 ex vivo skulls, using
a hemisphere-shaped array, which generally kept the ul-
trasound angles incident with the skull under 20◦. Future
transskull work will concentrate on using a more precise
version of the model in which the skull is modeled as a
three-layer, nonparallel structure.

The examples included in this paper illustrate how the
theory may be used and indicate some of its limits. The
method was able to model the propagation of a planar
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transducer through layers when the incident angle was
small enough for shear modes to be neglected. The al-
gorithm was particularly successful at ultrasound phase
estimation in which correlation was observed even near
the longitudinal critical angles. Sources of experimental
error are expected to arise from error in the sound-speed
estimates, density, and attenuation, as well as measure-
ments of material thickness, angle, and orientation angle.
Also, contributions by higher order reflections, which are
neglected in the present work, are a possible source of error
in the numeric calculation.

This preliminary study demonstrates the ability of a
wavevector planar projection model to predict the behav-
ior of waveforms propagated through layered media, given
a priori knowledge of the propagation media. The algo-
rithm was effective in predicting the distortion caused by
phantom-layer models at incident angles below Snell’s crit-
ical angle. Based on the results of this approach, we sur-
mise that the algorithm may be used for a wide range
of noninvasive focusing and aberration correction uses in
which longitudinal modes are dominant, such as focusing
through biological tissue layers.

References

[1] E. G. Williams and J. D. Maynard, “Holographic imaging with-
out the wavelength resolution limit,” Phys. Rev. Lett., vol. 45,
no. 7, pp. 554–557, 1980.

[2] P. R. Stepanishen and K. C. Benjamin, “Forward and backward
projection of acoustic fields using FFT methods,” J. Acoust.
Soc. Amer., vol. 71, pp. 803–812, 1982.

[3] R. Reibold and F. Holzer, “Complete mapping of ultrasonic
fields without the wavelength limit,” Acustica, vol. 58, pp. 11–16,
1985.

[4] M. E. Schafer and P. A. Lewin, “Transducer characterization
using the angular spectrum approach,” J. Acoust. Soc. Amer.,
vol. 85, pp. 2202–2214, 1989.

[5] M. Forbes, S. V. Letcher, and P. R. Stepanishen, “A wave vec-
tor, time-domain method of forward projecting time-dependent
pressure fields,” J. Acoust. Soc. Amer., vol. 90, pp. 2782–2793,
1991.

[6] P. T. Christopher and K. J. Parker, “New approaches to the
linear propagation of acoustic fields,” J. Acoust. Soc. Amer.,
vol. 90, pp. 507–521, 1991.

[7] D.-L. D. Liu and R. C. Waag, “Propagation and backpropaga-
tion for ultrasonic wavefront design,” IEEE Trans. Ultrason.,
Ferroelect., Freq. Contr., vol. 44, pp. 1–13, 1997.

[8] P. Wu and T. Stepinski, “Extension of the angular spectrum
approach to curved radiators,” J. Acoust. Soc. Amer., vol. 5,
pp. 2618–2627, 1999.

[9] N. N. Bojarski, “The k-space formulation of the scattering prob-
lem in the time domain,” J. Acoust. Soc. Amer., vol. 72, pp.
570–584, 1982.

[10] T. D. Mast, L. P. Souriau, D.-L. D. Liu, M. Tabei, A. I. Nach-
man, and R. C. Waag, “A k-space method for large-scale models
of wave propagation in tissue,” IEEE Trans. Ultrason., Ferro-
elect., Freq. Contr., vol. 48, pp. 341–354, 2001.

[11] C. J. Vecchio and P. A. Lewin, “Finite amplitude acoustic
propagation modeling using the extended angular spectrum
method,” J. Acoust. Soc. Amer., vol. 95, pp. 2399–2408, 1994.

[12] G. T. Clement and K. Hynynen, “Field characterization of ther-
apeutic ultrasound phased arrays through forward and backward
planar projection,” J. Acoust. Soc. Amer., vol. 108, pp. 441–446,
2000.

[13] D.-L. Liu and R. C. Waag, “Correction of ultrasonic wave-
front distortion using backpropagation and a reference waveform
method for time-shift compensation,” J. Acoust. Soc. Amer.,
vol. 96, pp. 649–660, 1994.

[14] G. T. Clement, R. Liu, S. V. Letcher, and P. R. Stepanishen,
“Forward projection of transient signals obtained from a fiber-
optic pressure sensor,” J. Acoust. Soc. Amer., vol. 104, pp. 1266–
1273, 1998.

[15] G. T. Clement, R. Liu, S. V. Letcher, and P. R. Stepan-
ishen, “Temporal backward planar projection of acoustic tran-
sients,” J. Acoust. Soc. Amer., vol. 103, pp. 1723–1726, 1998.

[16] C. J. Vecchio, M. E. Schafer, and P. A. Lewin, “Prediction of
ultrasonic field propagation through layered media using the ex-
tended angular spectrum method,” Ultrasound Med. Biol., vol.
20, pp. 611–622, 1994.

[17] Z. D. Qin, A. Tauriainen, J. Ylitalo, E. Alasaarela, and W.
Lu, “Frequency domain compensation for inhomogeneous layers
in ultrasound holography,” IEEE Trans. Ultrason., Ferroelect.,
Freq. Contr., vol. 36, pp. 73–79, 1989.

[18] M. E. Schafer, P. A. Lewin, and J. M. Reid, “Propagation
through inhomogeneous media using the angular spectrum
method,” in Proc. IEEE Ultrason. Symp., 1987, pp. 943–946.

[19] E. Kuhnickle, “Simulation calculations for monofrequent sound
fields in layered media,” in Acoustical Imaging. J. P. Jones, Ed.
New York: Plenum, 1995, pp. 47–53.

[20] A. D. Pierce, Acoustics, An Introduction to Its Physical Prin-
ciples and Applications. Woodbury, NY: Acoustical Society of
America, 1989.

[21] M. E. Schafer, “Transducer characterization in inhomogeneous
media using the angular spectrum method,” Ph.D. dissertation,
Dept. of Biomedical Engineering, Drexel University, Philadel-
phia, PA, 1988.

[22] E. B. Saff and A. D. Snider, Fundamentals of Complex Analysis.
Englewood Cliffs, NJ: Prentice-Hall, 1976.

[23] L. E. Kinsler and A. R. Frey, Fundamentals of Acoustics. New
York: Wiley, 1982.

[24] J. E. Marsden and A. J. Tromba, Vector Calculus. New York:
Freeman, 1988.

[25] G. T. Clement and K. Hynynen, “Correlation of ultrasound
phase with physical skull properties,” Ultrasound Med. Biol.,
vol. 28, pp. 617–624, 2002.

[26] G. T. Clement and K. Hynynen, “A noninvasive method for
focusing ultrasound through the human skull,” Phys. Med. Biol.,
vol. 47, pp. 1219–1236, 2002.


