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Abstract

Over the past two decades the feasibility for using transcranial ultrasound as both a therapeutic and
diagnostic tool has been established. Various aberration-correction techniques have been proposed to
achieve transcranial focusing, including computed tomography-derived model based corrections,
ultrasound-derived model based corrections, magnetic resonance acoustic radiation force techniques,
and techniques involving the invasive introduction of an acoustic source or receiver into the brain.
Here, we investigate the correlation between transcranial infrared light (IR) and transcranial
ultrasound, where we examine whether IR could be an indicator of any of the key acoustic properties
that affect transcranial transmission (signal attenuation, speed of sound, and bone density). Nine
human skull samples were utilized in the study. The interior of each sample was illuminated over its
inner surface using a diffuse light source. Light transmitted to the outer surface was detected by a 3
mm diameter 940 nm infrared sensor. Acoustic measurements were likewise obtained in a water tank
usinga 12.7 mm diameter 1 MHz source and a needle hydrophone receiver. Results reveal a positive
correlation between the acoustic time-of-flight and optical intensity (the correlation coefficient is
between 0.5 and 0.9). Subsequent investigation shows this correlation to hold independent of the
presence or absence of dura mater on the samples. Poor correlation is observed between acoustic
amplitude and optical intensity (the correlation coefficient is between 0.1 and 0.7).

1. Introduction

Although it has been reported that ultrasound can
propagate through human skulls, including thicker
parts of the bone [1, 2], coherent focusing generally
requires some form of correction to offset wave
distortion [3]. A variety of approaches for performing
this offset have been proposed [4], including time
reversal techniques [5], the introduction of a scattering
source [6—8], or receiver [9] into the brain, computed
tomography (CT)-based [10, 11] or MR-based [12]
model correction, ultrasound based-correction [13],
and magnetic resonance acoustic radiation [14, 15]. In
the first steps toward identifying a potentially simpler
and more direct means for transcranial ultrasound
windowing, we have conducted a study comparing
acoustic transmission parameters to those of diffuse
infrared transmitted through the skull. The study was
originally inspired by the observation that skulls
possess locations which are

certain relatively

transparent to ultrasound waves. This includes not
only the temporal bone window [16], but also
locations that can appear on the thicker frontal,
occipital, and parietal bones. Unfortunately, the pre-
cise locations of such windows tend to vary greatly
between different skulls [17]. Casual examination of
ex vivo skull specimens, however, led us to hypothesize
that transmitted light intensity at a given location
correlates positively with ultrasound transmission
[18], motivating us to explore trends between trans-
mitted optical data and ultrasound data.

The study was performed using infrared light (IL)
transmitted through ex vivo human skull specimens
under the auspice that, should correlation be found
between acoustic and optic data, it might motivate
further work aimed at detecting similar correlations in
a reflection mode and through the scalp. Ultrasound
measurements were acquired along the surfaces of
skull specimens situated between a transducer and a
hydrophone, with the skull surfaces positioned

©2016 IOP Publishing Ltd
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Figure 1. Marked sagittally sectioned half skull. Each marked circle position was numberedas 1,2, 3, ....

s
Sliced skull

Figure 2. Schematic for ultrasound measurement.

normal to the transducer. Optical measurements were
subsequently obtained in a dark room by transmitting
IL through the skull sections using an infrared sensor
to measure intensity variance on the skull surface.

As shown below, when acoustic amplitudes were
compared to the optical intensity, a poor correlation
was found. However, a good correlation was observed
between the ultrasound time-of-flight (TOF) and opti-
cal intensity. The procedure and results of this pre-
liminary work are described below, along with
discussion on plausible physical explanation of our
findings, and the limitations of this transmission-
based study.

2. Methodology

Ultrasound and infrared transmission measurements
were performed on nine formalin-fixed skull samples

representing two sagittally sectioned half skulls and
seven calvaria, among which two calvaria had intact
dura mater. Because the skull is a porous material, one
concern was the presence of trapped gases within the
ex vivo skull bone might affect both the ultrasound and
infrared measurement. Therefore one skull specimen
was examined before and after degassing. The skull
was kept under vacuum for approximately 18 h before
repeating the infrared measurement. This skull was
then immersed in degassed water and the whole
system was degassed for another 20 min before
repeating the ultrasound measurement. Excellent
before- and after-degassing agreement was found
at all measurement locations for both the acoustic
and infrared data (the absolute value error for each
point is less than 0.6%); so we assumed that only
negligible amount of gas was trapped in our formalin-
fixed skull specimens, and the degassing process is not
essential.
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Figure 3. Waveforms from hydrophone with and without skull subject: black is water-only measurement, blue is the measurement for
the temporal window, green is for the parietal bone area and red is for the frontal bone area.
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Figure 4. Schematic for IR measurement. The details of IR sensor was shown in the inset.

2.1. Ultrasound measurement
Acoustic signals were transmitted in a water tank
between a transducer (Olympus NDT, V303-SU, 1
MHz, 12.7 mm OD, Waltham, MA) and a hydrophone
(Onda, HNC-1000, 1 mm diameter active area,
Sunnyvale, CA) with and without a skull placed in
front of the source transducer. Measurement
positions on each skull were physically marked
with circles corresponding to the approximate
transducer diameter shown in figure 1. For the
seven skulls void of dura mater, calipers were
used to determine the skull thickness. Four
positions in each circle were measured, one at
center and three adjacent randomly picked. The
ultrasound setup illustrated in figure 2 shows the
relative transducer and hydrophone alignment
with a separation of approximately 13 cm.

For each measurement location, skulls were placed
against the transducer and positioned so that the

transducer was centered about a reference circle and
angled approximately parallel to the transducer face.
An impulsive voltage was supplied to the transducer
(Panametrics 500PR, Waltham, MA), and the result-
ing hydrophone response was read by an oscilloscope
(Tektronix, DPO3034, Beaverton, OR) triggered from
the voltage source. The measurement procedure was
repeated three times for each position and each time
the skull sample was repositioned. No significant
changes were found between the three measurements.
Four sample waveforms are shown in figure 3: one is
water-only measurement, one from the temporal
bone window, one from parietal bone and one from
frontal bone.

2.2. IR measurement
The optical measurement setup is shown in figure 4.
All measurements were performed in a dark room. A

3
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heat lamp (Sylvania, 100 W) was used as a light source ~ surface. Under this configuration it was assumed that
and a light shaping diffuser membrane was inserted to  the distribution of infrared intensity over skull loca-
obtain uniformly diffused light upon the inner skull tion was even. A skull was situated above the
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blank), peak pressure Pp,,,, and first arrival time-of-flight TOF; The * markers listed above the blue bars denote p-valuess: *’ is for
p < 0.01,“"for p < 0.001, " for p < 0.0001and no " markers while p > 0.01.

membrane. One infrared sensor (TSAL4400-3 mm, measurement. On the sensor surface, a flexible pad-
940 nm), shown in the inset, was embedded in a ding shown as a yellow circle was used for better
cylindrical aluminum tube to take infrared matchingtheirregular curved skull surface.
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3. Results

The number of measurement positions attainable by
both the ultrasound and optic setups varied, depend-
ing on skull size and shape, ranging from 36 to 66
positions (mean = 46) over the nine skulls examined
and totaling 417 over all skulls. Data were analyzed to
compare relative transmitted optic intensity, skull
thickness (L), transmitted peak acoustic pressure
amplitude (Pp,) and TOF, defined here as the first
detectable time point from the ultrasound signal.
Results from one skull sample are shown in figure 5.
Both the correlation coefficient and p-values for the
data, calculated in Matlab (Mathworks, R2011a,
Natick, MA) using the command corrcoef, are listed in
the inset of each figure.

The correlation coefficients for all skull measure-
ments are shown in figure 6 and the “” markers on
each bar denote the significance of correlation mea-
sured by their p-values. Among the nine samples, all p-
values between thickness and infrared intensity are
below 0.01, which indicates that they correlate. In
figure 6(b), it can be seen that skull 7 and skull 8 have
poor correlations between peak relative pressure Py,
(taken directly from the hydrophone voltage) and
infrared intensity as the p-value is higher than 0.01. A
better and more uniform correlation was found
between the TOF and infrared intensity with all p-
values less than 0.0001. Figure 7 illustrates TOF and IR
intensity as a function of position along one skull sur-
face. It can be seen that the two groups of data corre-
late well across the entire skull.

Finally, linear regression analysis was performed
to study the correlation between infrared intensity and
skull thickness, peak acoustic amplitude and TOF for
all the nine skulls” experimental data. Both the linear
fitand prediction intervals are calculated and shown in
figure 8. The fitted equation for IR and skull thickness
Lis:

Ly{mm}=— 0.11{mm mV~!} * IR{mV}
+ 40.97{mm} 4+ 3.5{mm} (1)

with coefficient of determination R* = 0.53.

The average human skull thickness is approxi-
mately 6.85 mm. An interval of 3.5 mm would intro-
duce more than 50% error, which implies that infrared
intensity is probably not a good indicator for the thick-
ness estimation.

The fitted equation for IR and peak acoustic pres-
sure P, is:

Poax {au} = 0.0006 {au mV~!} * IR{mV}
— 0.15{au} £ 0.034{au} )

with coefficient of determination R* = 0.24.

A low R? value of 0.24 suggests a weak linear rela-
tionship between acoustic energy and optical energy.
It is likely because the peak pressure is instantaneous
while the infrared intensity measurement is spatially
and temporally averaged. This result also explains why
some skulls, e.g. skull 7 and skull 8 in figure 6(b), have
poor correlation due to different bone structure.

The fitted equation for IR and TOF is:

TOF {us} = 0.035{ s mV~!} % IR {mV}
+ 72.23{pus} £+ 0.98{us} 3)

with coefficient of determination R* = 0.61.

For transcranial ultrasound at 500 kHz (which
would be used in our transcranial imaging), an interval
of £0.98 us means the degree of error of TOF estima-
tion based on infrared measurement will translate to
+1/2 of a cycle, which is good enough to focus the
beam with a phased array. However, for 1 MHz and
above, this interval translates to £1 or more cycles,
which makes the estimation invalid for guiding the
sound beam.

4, Conclusions and discussion

A study with nine ex vivo human skulls was performed
to examine the correlation between the optic intensity
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of diffuse infrared transmitted through the skull and
ultrasound transmission. Based on the linear regres-
sion analysis of all the nine skull samples, we can
conclude that the TOF estimation from the infrared
measurement can be potentially used for our transcra-
nial ultrasound focusing.

From figure 8, it can be seen that the infrared
intensity inversely correlates to the bone thickness
and positively correlates to the acoustic first arrival
TOF. Though the full nature of the optical

scattering has yet to be fully investigated, a plau-
sible explanation for correlation between light
intensity and TOF entails the skull’s layered com-
position of relatively opaque (acoustically) trabe-
cular bone sandwiched between layers of more
transmissive cortical bone (figure 9). Moreover
thicker bone tends to correspond to thicker trabe-
cular layers, thus introducing a negative correla-
tion between IR measurements and thickness as
well as TOF versus thickness.
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Figure 9. Skull bone: inner and outer layers are the cortical bone; in between is the trabecular bone.

Trabecular

While this correlation study pertains to IR trans-
mission mode, the relationship motivates further
study as to whether a similar correlation can be found
between backscattered IR and transmission ultra-
sound. If so, this could have direct application in tran-
scranial ultrasound phase aberration correction [19]
given that the light of wavelengths between 650 and
900 nm can penetrate skin and tissues by increasing
the incident intensity of light [20].
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