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Abstract: Planar projection methods have been shown to rapidly relate fields between two planes.
Such an approach is particularly useful for characterizing transducers, since only a single plane needs
to be measured in order to characterize an entire field. The present work considers the same approach
in the presence of an arbitrary dispersion relation. Unlike traditional methods that use Fourier solutions
of the time-domain wave equation, the approach starts from a frequency-domain Helmholtz equation
for waves in a dispersive medium. It is shown that a transfer function similar to that derived from time
domain equations can be utilized. Both the forward- and backward-projection behaviors are examined
and it is demonstrated that the approach is invariant to propagation direction.
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1. INTRODUCTION

A variety of linear planar projection algorithms in the

wavevector-frequency domain [1–3] and the wavevector-

time domain [4–6] have been described for rapidly

computing acoustic waves between positions in space/

time. Generally, these methods are derived from Fourier

solutions to the time-domain linear wave equation. Such an

approach, however, limits the dispersion to a fixed relation

characterized by the particular wave equation. Thus,

anomalous dispersion in biological tissue and other

materials can only be approximated by such specific

equations.

A more general time domain wave equation for

materials that follow a frequency power law was expressed

by Szabo [7], in terms of the linear lossless wave equation

and a convolution loss operator, which has subsequently

been modified and used to describe a variety of situations

in the time domain, assuming a power law dependence.

Moreover, Waters et al. [8] showed this representation

could be extended to general distributions. Variations in the

approach center on efficient methods to model the time-

domain solutions [9–12].

On the other hand, the general case of anomalous

dispersion can be handled with relative ease in wave-vector

space [13]. The present work indicates how the frequency-

domain wave equation can be further transformed into

the wavevector-frequency domain, where it has a known

solution. It will be shown that this solution can be used for

planar projection and is valid under arbitrary dispersion

conditions. Moreover, the selection of a specific dispersion

relation readily relates the equation to the most commonly

used time-domain equations.

A key aspect of planar projection is its ability to back-

propagate a signal toward its source. It is demonstrated that

the projection property is still valid in dispersive media.

Utility of such projections may include a wide range of

applications where the angular spectral method is applied,

including transducer field characterization in lossy media,

the prediction of fields through homogeneous and layered

media, and reconstruction of fields via back-projection.

2. THEORY

2.1. The Generalized Dispersive Wave Equation

The present linearized theory is based on a dynamic

equation of state, which leads to the wave equation in

dispersive media [14],

r2Pðr; !Þ þ
!2

Cð!Þ2
Pðr; !Þ ¼ 0; ð1Þ

where P is the Fourier transform of pressure with respect to

time and C is the complex sound speed. Frequency

dependence on C prevents straightforward expression of

(1) in the time domain, thus motivating frequency domain�e-mail: gclement@hms.harvard.edu
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modeling [15]. However, rather than propagate the wave

purely in space, (1) can be transformed with respect to the

Cartesian orthogonal coordinates, x and y such that the

equation takes the form of the ordinary differential

equation

@

@z
~PPðkx; ky; z; !Þ þ K2 ~PPðkx; ky; z; !Þ ¼ 0; ð2Þ

where

K2 ¼
!2

C2
� kx

2 � ky
2; ð3Þ

and ~PP is the Fourier transform of pressure with respect to

the Cartesian x and y dimensions, and time.

The equation is identical in form to that used in the

angular spectrum approach, with the important distinction

that C is an arbitrary complex function of frequency. The

relevant known solution to (2) in terms of the initial

pressure is given by

~PP ¼ ~PP0e
iKðz�z0Þ: ð4Þ

2.2. Relation to Lossy Time Domain Equations

Before considering the case of an anomalous disper-

sion, it is instructive to illustrate how (2) and (3) readily

reduce to common linear equations in the time domain by

defining C. It may be readily verified that setting C ¼ c0,

where c0 is a real constant, gives the transformed form of

the standard lossless equation,

r2pðr; tÞ �
1

c02
@2

@t2
pðr; tÞ ¼ 0: ð5Þ

Substitution of the value C ¼ c0=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ i!�=c02

p
into

Eq. (2) and Fourier transformation yields a linearized form

of the Westervelt equation [16,17],

r2pðr; tÞ �
1

c02
@2

@t2
pðr; tÞ þ

�

c04
@3

@t3
pðr; tÞ ¼ 0: ð6Þ

Similarly setting C ¼ c0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ i�!

p
gives the trans-

formed form of the linearized Stokes equation [18], whose

dispersion relation was previously described [19] for

forward planar projection,

1þ �
@

@t

� �
r2pðr; tÞ �

1

c02
@2

@t2
pðr; tÞ ¼ 0: ð7Þ

The relaxation time for the medium is given by �.

Finally, setting C ¼ c0=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ic0�j!jy=!

p
, the gener-

alized power loss equation expressed by Szabo [7] remains

in its manageable frequency domain form, with y a real

number that gives the power relation. This equation was

derived by induction in Szabo’s work for describing lossy

media of the power law type. This behavior concerns a

large range of physical problems in underwater acoustics

and medical ultrasound where loss is dependent on

frequency [7]. When C is substituted into (2) the Fourier

transform is not trivial, unless y is an even integer.

However, through the use of generalized functions, it may

be shown that in the space-time domain the equation

becomes:

r2pðr; tÞ �
1

c02
@2

@t2
pðr; tÞ þ L� � pðr; tÞ ¼ 0

L� ¼
2

c0

��0� ðyþ 2Þ cos
�
�ðyþ 1Þ

2

�

�jtjyþ2

ð8Þ

where � represents the gamma function and � defines

a convolution operator. For detailed derivation leading to

Eq. (8), the reader is directed to Szabo’s original paper.

Comparison between Eqs. (8) and (4) indicate a significant

difference in complexity between spatial planar projection

and the temporal representation of the same equation.

2.3. Backward Projection

One advantage of the approach is the ability to

propagate both toward and away from the source [20].

Thus, a signal can be recorded away from the source, and

then back-projected to give information about the signal

near a transducer face, assuming the propagating field is

contained within the measurement plane, z0. This ability

can be contrasted with time reversal [21], which is violated

in the presence of the absorption term.

As Hallaj et al. [22] have noted, given that pðr; tÞ is a
solution to the time domain equation, a general condition

for time-reversal invariance is that pðr;�tÞ is also a

solution. By the time reversal property of the Fourier

transform,

pðr;�tÞ,
FT

Pðr;�!Þ; ð9Þ
it can be seen from (1) that a necessary and sufficient

condition for invariance is

Cð!Þ ¼ Cð�!Þ:

Now, in analogy with time invariance, if ~PPðkx; ky; z; !Þ is a
solution to (2), validity of backward projection requires

that ~PPðkx; ky;�z; !Þ is also a solution. By direct substitu-

tion, it may readily be verified that this is the case. Thus,

(2) is invariant with respect to the spatial dimension.

3. NUMERIC EXAMPLE

To illustrate the approach, signals radiating from a

30-mm diameter circular piston radiator were considered.

A Gaussian-shaded temporal pulse was radiated from the

piston face, which was situated at the origin of a Cartesian

axis, in the plane normal to the z-axis, as illustrated in

Fig. 1. A center temporal frequency of 1MHz and �3 dB

bandwidth of 251KHz was used for all simulations. The

Acoust. Sci. & Tech. 31, 6 (2010)

380



simulation input was a 3D dataset, Pðx; y; z0; !Þ, represent-
ing the signal frequency content over the x-y plane at z ¼ 0.

Initial values were expressed as an input grid of 100�
100� 64 points, representing the two spatial dimensions

and the frequency, respectively. The spatial resolution was

0.3mm in both spatial dimensions and the frequency

resolution was 0.016MHz.

A low pass spatial filter was added in order to eliminate

explosion from exponentially increasing round-off error

during back-projection. That is, higher spatial frequencies

are known to lead to non-propagating evanescent wave

solutions when kx
2 þ ky

2 > Ref!2

C2g. The cutoff was set at

0:7Ref!2

C2g, removing all evanescent waves as well as the

upper 30% of the higher spatial frequencies which, due

to the directivity of the beam, were not expected to

significantly affect the results. Specifically, Pðkx; ky; z ¼
0mm; !Þ above the cutoff frequency contained a mean

value equal to 0.3% of the peak found at Pð0; 0; z ¼
0mm; !Þ, with a maximum value equal to 1.3% of this

peak.

Details of the algorithm follow a previous description

by Clement [19], but with modification allowing for an

arbitrary dispersion relation. In the former work, the

algorithm was experimentally validated for the case of

forward projection through absorbing layers. The present

version of the algorithm was implemented using Matlab, on
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Fig. 1 (a) The geometry of the projection problem, with a circular planar source, (b) the initial time-trace of the signal
across the source, and (c) The Fourier transform of the signal.
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Fig. 2 (a) The initial signal at z ¼ 0mm (left, solid) is projected forward to z ¼ 60mm in an ideal medium (dashed), and in
a lossy, dispersive medium (solid). (b) The lossy signal (right) at z ¼ 60mm is then used as a source and back-projected to
z ¼ 0mm under ideal conditions (smaller signal, left), and with absorption and dispersion (larger signal, left).
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a XP 64-bit operating system. The hardware consisted of

two dual-core 3GHz Xeon processors, and 8GB of RAM.

CPU time was monitored over the entire simulation.

Typical processing times of 8 s–10 s were observed, with

a memory requirement of approximately 1.25GB.

Simulated signals were propagated through a dispersive

medium and ‘‘measured’’ over the x-y plane at a distance

z0 away from the source. The propagated signal was

compared in both the frequency domain and the time

domain with a second signal that was calculated using

C ¼ 1;498m/s. Figure 2(a) illustrates a projection from

z ¼ 0mm to z ¼ 60mm, which was performed in an ideal

medium, and in a lossy, dispersive medium. The projected

dispersive signal was then used as the source and back-

projected to the position of the transducer face, where it

was compared with the original signal (Fig. 2(b)). For this

example, calculations were performed using a velocity

distribution given in Fig. 3(a) and attenuation value as

shown in 3(b). In this manner, the back-projection simu-

lated the process of characterizing a transducer by

measuring a field and then back-projecting it to the source

location. For reference, the ‘‘measured’’ signal was also

back-projected neglecting dispersion.

The dispersion relation described by the frequency-

dependent phase velocity given in Fig. 3(a) and attenuation

given by 3(b) describe velocity [23] and absorption [24]

distributions that are within the range that may be found,

for example, in human cancellous bone. The field was

projected forward to the plane z ¼ 60mm from the source.

Figure 3(c) shows the attenuation and low pass filtering of

the signal taken along the origin, Pð0; 0; z ¼ 60mm; !Þ as
compared to the non-dispersive case (C ¼ 1;491m/s). The

time history of the dispersive signal along the x-axis

(y ¼ 0, z ¼ 60mm) is provided for reference in Fig. 4.

The projected dataset was next used to simulate a field

measurement acquired at z ¼ 60mm, and back-projected to
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content of the back-projection both neglecting dispersion (dashed) and taking into account dispersion (dotted) is compared
to the initial signal (solid).
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z ¼ 0mm taking dispersion into account. For reference, a

lossless back-projection was also performed using the same

starting dataset. The frequency domain plot in Fig. 3(d)

provides the spectrum on-axis after back-projection. The

plot illustrates how the higher frequency components of the

signal were reconstructed when dispersion was taken into

account (left vertical axis). This spectrum may be con-

trasted with the lossless back-projection (right vertical

axis), which reconstructs a spectrum lower in both peak

frequency and amplitude than the actual starting signal.

Differences in the spectra result in the time-domain

differences given in Fig. 5, which shows the restoration

of the signal phase and spatial localization.

A similar series of projections was carried out using

tabulated data for the sound speed and absorption in human

skull bone [25]. As shown in Figs. 6(a) and 6(b), the sound

speed is approximately constant from 0.5 to 1.5MHz,

while the absorption increases more than a factor of 8. The

data were first projected from z ¼ 0 forward to z ¼ 14mm,

the assumed thickness of the bone. The projected datasets

were then used as simulated field measurements and back-

projected to the source. The dimension was chosen due to

be representative of thick skull bone [26]. Discrepancy in

the spectrum is apparent in the plot along the origin,

Pð0; 0; !Þ, as shown in Figs. 6(c) and 6(d) (right vertical

axes provide scale for lossless propagation). Such discrep-

ancy demonstrates how an improper choice of equations

could potentially lead to erroneous results in aberration

correction methods that rely on the prediction of trans-

cranial fields.

Further evaluation the method was conducted by

calculating the RMS mean difference between the known

initial signal at the source, p0ðx; y; tÞ, and the back

projected signals pðx; y; tÞ:

R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
x;y;t

jpðx; y; tÞ � p0ðx; y; tÞj2

X
x;y;t

jp0ðx; y; tÞj2

vuuuuut : ð10Þ

To provide a more reasonable comparison, the signal

neglecting dispersion was increased by an amplification

factor, set so that the peak values of the initial and the

projected waveforms (arbitrarily set at 0.268MPa) were

identical. In many applications, including time-reversal

[22], it is common to offset attenuation by increasing initial

signals by such factors. For the first numeric case shown in

Fig. 3, an RMS difference of 19% was achieved for the

dispersive signals, while the RMS difference without

dispersion was 94%. Both values may be compared to a

baseline RMS difference of 1.6%, obtained by projecting

both forward and backward in a non-lossy medium, first to

z ¼ 60mm then back to the source. This baseline provides

an estimate on the accuracy of the technique under ideal

conditions. A similar set of RMS difference measurement

were made for the send case, presented in Fig. 6. An RMS

difference of 16% was achieved for the dispersive signals,

while the RMS difference without dispersion was 113%.

The preceding examples were simulated using decid-

edly ideal conditions, the most notable being the absence of

noise. Since noise could potentially have detrimental

effects on back-projection, numeric projections were next

performed in the presence of random noise. In this study,

normally distributed random noise was generated using a

pseudo-random generator and then added to the initial

signal, which in the absence of noise was identical to the

waveform in Fig. 4. The signal-to-noise ratio (SNR) was
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determined by taking the ration between the initial wave-

form peak amplitude and the standard deviation of the data

for all points away from the waveform. A range of SNR

values between 0.1 and 40 was considered.

To regulate exponentially increasing error, a dynamic

lowpass Butterworth filter was applied to the temporal

frequency dimension, with a cutoff of approximately

1.22MHz. Since the introduction of the filter itself can

result in the loss of high-frequency signal components,

simulation was first performed with the filter in place

under idealized noiseless conditions. In this scenario, a

modest increase in the RMS difference from 19% (no filter)

to 21% (temporal filtering) was observed. In the presence

of noise, the algorithm was observed in all tested cases to

be stable, provided that the bandpass filter was implement-

ed. Figure 7(a) shows the on-axis initial pressure field

before projection for SNR values of 2, 4 and 16,

respectively. Figure 7(b) shows the corresponding fields

after back-projection to the source. From the figure, it may

be seen that although error grows with increasing noise,

this error is distributed over the entire measurement

volume so that the waveform is reconstructed even in a

relatively noisy environment. A summery of the observed

RMS difference as a function of SNR provided in Fig. 8,

indicating decreased error with increasing signal that

approaches the 21% error limit set by error in the method

under idealized conditions.

4. SUMMARY AND CONCLUSION

This work described and demonstrated a numeric

wavevector-frequency domain method for wave propaga-

tion that is valid for arbitrary dispersion relationships. As

indicated in the work, limitations of the back-projection

will ultimately be set by the signal-to-noise ratio (SNR).

Nonetheless, significant improvement in the overall pres-

sure fields were achieved by consideration of frequency
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dependent absorption and phase speed, without sacrifice to

computation time or modeling complexity. It is stressed

that the same measurement limitations are present even in

lossless projection methods, due to diffractive spreading of

the signal. Thus it is expected that in the dispersive case,

like the lossless case, appreciable signal strength is

required for accurate back projection, with the precise

requisite SNR a function of the desired accuracy. Under the

conditions of synthetic gaussian noise, the algorithm was

found to be stable, provided that a low-pass temporal filter

was added to the algorithm. In able to reconstruct the initial

fields with correct frequency content, albeit with increased

error.

Planar projection was validated under arbitrary dis-

persion conditions for both forward and backward prop-

agation. This could prove particularly useful under con-

ditions of anomalous dispersion, and provides a

straightforward and computationally efficient method for

predicting behavior in dispersive media. The current

discussion was limited only to homogeneous situations,
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but the method is expected to be applicable under more

general conditions [19].

While planar projection methods are known for their

computational efficiency, their inherent operations in the

frequency domain also make them ideal for operating

dispersive media. Furthermore, symmetry of the spatial

dimension allows back-propagation which remains invar-

iant, regardless of temporal complexity.
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